Détail de l'auteur
Auteur M. Balli |
Documents disponibles écrits par cet auteur (1)



1D model of an active magnetic regenerator / P. Nikkola in International journal of refrigeration, Vol. 37 N° 1 (Janvier 2014)
![]()
[article]
Titre : 1D model of an active magnetic regenerator Titre original : Modèle unidimensionnel d'un régénérateur actif magnétique Type de document : texte imprimé Auteurs : P. Nikkola, Auteur ; C. Mahmed, Auteur ; M. Balli, Auteur Année de publication : 2014 Article en page(s) : pp. 43-50 Note générale : Refrigeration Langues : Anglais (eng) Mots-clés : Magnetic refrigeration magnetic cooling AMR modeling finite differences Résumé : The 1D active magnetic regenerator model developed at the University of Applied Sciences of Western Switzerland is described. The system of two partial differential equations is discretized with the finite differences method backward in time and solved with the tridiagonal matrix algorithm. New features, not found in the literature in 1D models, are thermal losses in the regenerator, parasitic heat exchange, and the calculation of the AMR cycle output power in steady state. The model is implemented in MATLAB and it has a graphical user interface. En ligne : http://www.sciencedirect.com/science/article/pii/S0140700713002600
in International journal of refrigeration > Vol. 37 N° 1 (Janvier 2014) . - pp. 43-50[article] 1D model of an active magnetic regenerator = Modèle unidimensionnel d'un régénérateur actif magnétique [texte imprimé] / P. Nikkola, Auteur ; C. Mahmed, Auteur ; M. Balli, Auteur . - 2014 . - pp. 43-50.
Refrigeration
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 37 N° 1 (Janvier 2014) . - pp. 43-50
Mots-clés : Magnetic refrigeration magnetic cooling AMR modeling finite differences Résumé : The 1D active magnetic regenerator model developed at the University of Applied Sciences of Western Switzerland is described. The system of two partial differential equations is discretized with the finite differences method backward in time and solved with the tridiagonal matrix algorithm. New features, not found in the literature in 1D models, are thermal losses in the regenerator, parasitic heat exchange, and the calculation of the AMR cycle output power in steady state. The model is implemented in MATLAB and it has a graphical user interface. En ligne : http://www.sciencedirect.com/science/article/pii/S0140700713002600 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire