Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Navid Borhani
Documents disponibles écrits par cet auteur
Affiner la rechercheTwo-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels / Sylwia Szczukiewicz in International journal of refrigeration, Vol. 36 N° 2 (N° spécial) (Mars 2013)
[article]
in International journal of refrigeration > Vol. 36 N° 2 (N° spécial) (Mars 2013) . - pp. 402–413
Titre : Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels Titre original : Transfert de chaleur diphasique et visualisation à grande vitesse de l'écoulement de frigorigènes à l'intérieur de microcanaux multiples en silicium d'une taille de 100 × 100 μm2 Type de document : texte imprimé Auteurs : Sylwia Szczukiewicz, Auteur ; Navid Borhani, Auteur ; John Richard Thome, Auteur Année de publication : 2013 Article en page(s) : pp. 402–413 Note générale : Refrigeration Langues : Anglais (eng) Mots-clés : Multi-microchannel evaporator; Silicon chip; Two-phase cooling; Refrigerant; Infra-red camera; High-speed visualization Résumé : Two-phase flow boiling of R245fa, R236fa, and R1234ze(E) in 100 × 100 μm2 parallel microchannels for cooling of future 3D-ICs has been investigated. Significant flow instabilities, back flow, and non-uniform flow distribution among the channels were observed in the micro-evaporator without any inlet restrictions (micro-orifices). Therefore, to prevent such problems, rectangular restrictions were placed at the inlet of each channel and the two-phase flow flashed by the micro-orifices was identified as the most optimal operating condition. In the present study, a novel in-situ pixel-by-pixel technique was developed to calibrate the raw infra-red images, thus converting them into two-dimensional temperature fields of 10’000 pixels over the test section surface operating at 60 Hz. Tests showed that the base heat flux of 48.6 W cm−2 could be dissipated whilst keeping the micro-evaporator’s temperature below 85 °C. En ligne : http://www.sciencedirect.com/science/article/pii/S0140700712003131 [article] Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels = Transfert de chaleur diphasique et visualisation à grande vitesse de l'écoulement de frigorigènes à l'intérieur de microcanaux multiples en silicium d'une taille de 100 × 100 μm2 [texte imprimé] / Sylwia Szczukiewicz, Auteur ; Navid Borhani, Auteur ; John Richard Thome, Auteur . - 2013 . - pp. 402–413.
Refrigeration
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 36 N° 2 (N° spécial) (Mars 2013) . - pp. 402–413
Mots-clés : Multi-microchannel evaporator; Silicon chip; Two-phase cooling; Refrigerant; Infra-red camera; High-speed visualization Résumé : Two-phase flow boiling of R245fa, R236fa, and R1234ze(E) in 100 × 100 μm2 parallel microchannels for cooling of future 3D-ICs has been investigated. Significant flow instabilities, back flow, and non-uniform flow distribution among the channels were observed in the micro-evaporator without any inlet restrictions (micro-orifices). Therefore, to prevent such problems, rectangular restrictions were placed at the inlet of each channel and the two-phase flow flashed by the micro-orifices was identified as the most optimal operating condition. In the present study, a novel in-situ pixel-by-pixel technique was developed to calibrate the raw infra-red images, thus converting them into two-dimensional temperature fields of 10’000 pixels over the test section surface operating at 60 Hz. Tests showed that the base heat flux of 48.6 W cm−2 could be dissipated whilst keeping the micro-evaporator’s temperature below 85 °C. En ligne : http://www.sciencedirect.com/science/article/pii/S0140700712003131