Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur B. Huet
Documents disponibles écrits par cet auteur
Affiner la rechercheInfluence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior / B. Huet in Materials and corrosion, Vol. 61 N° 2 (Fevrier 2010)
[article]
in Materials and corrosion > Vol. 61 N° 2 (Fevrier 2010) . - pp. 111–124
Titre : Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior Type de document : texte imprimé Auteurs : B. Huet, Auteur ; V. L'Hostis, Auteur ; L. Tricheux, Auteur Année de publication : 2010 Article en page(s) : pp. 111–124 Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Alkali; carbonate; cement; mild steel; silicate; sulfate Résumé : The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (equation image) and alkali (Na+, K+) content on carbonate alkalinity of the CO2/H2O open system (pCO2 = 0.3 mbar). In this system, calcium-silicate hydrates (C–S–H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. En ligne : http://onlinelibrary.wiley.com/doi/10.1002/maco.200905244/abstract [article] Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior [texte imprimé] / B. Huet, Auteur ; V. L'Hostis, Auteur ; L. Tricheux, Auteur . - 2010 . - pp. 111–124.
Génie mécanique
Langues : Anglais (eng)
in Materials and corrosion > Vol. 61 N° 2 (Fevrier 2010) . - pp. 111–124
Mots-clés : Alkali; carbonate; cement; mild steel; silicate; sulfate Résumé : The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (equation image) and alkali (Na+, K+) content on carbonate alkalinity of the CO2/H2O open system (pCO2 = 0.3 mbar). In this system, calcium-silicate hydrates (C–S–H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. En ligne : http://onlinelibrary.wiley.com/doi/10.1002/maco.200905244/abstract