Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur N. Larché
Documents disponibles écrits par cet auteur
Affiner la rechercheCorrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications / T. Prosek in Materials and corrosion, Vol. 61 N° 5 (Mai 2010)
[article]
in Materials and corrosion > Vol. 61 N° 5 (Mai 2010) . - pp. 412–420
Titre : Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications Type de document : texte imprimé Auteurs : T. Prosek, Auteur ; N. Larché, Auteur ; M. Vlot, Auteur Année de publication : 2010 Article en page(s) : pp. 412–420 Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : accelerated testing; alloy coating; automotive; confined zone; perforation corrosion Résumé : Panels coated by hot dipping with zinc (HDG), Zn–5Al (Galfan) and Zn–1.5Al–1.5Mg coatings at different thicknesses were phosphated and painted on an industrial line. Crevice panels with non-painted bare parts modelling conditions in hem flanges, reference panels with open surfaces and formed non-painted panels were exposed to a cyclic accelerated automotive test. Zn–Al–Mg coatings with the thickness of 10 µm provided similar or even better protection than HDG and Galfan at 20 µm in both confined and open configurations. In comparison to 10-µm HDG, the Zn–Al–Mg coating delayed red rust appearance in crevices by a factor of 2 and the maximal depth of corrosion in the steel substrate was by 42% lower. Confined areas were more corroded than open surfaces. For HDG, the time to red rust appearance dropped by 50–75%, corrosion attack in steel was from 3.5 to 7 times deeper and mass gain was about 2.3 times higher in crevices than on open surfaces. Corrosion of Zn–Al–Mg may be more affected by local environmental conditions created by the crevice configuration than for HDG. Red rust appearance on formed panels of 20-µm Galfan, 7-, 10- and 14-µm Zn–Al–Mg was delayed to 10-µm HDG by a factor of 2.8, 3.5, 3.8 and >4.5, respectively. No adverse effect of forming was noticed. The results indicate that 2- to 3-fold reduction of the coating thickness for Zn–Al–Mg alloy coatings in comparison to traditional HDG may be possible without compromising the corrosion performance. En ligne : http://onlinelibrary.wiley.com/doi/10.1002/maco.200905425/abstract [article] Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications [texte imprimé] / T. Prosek, Auteur ; N. Larché, Auteur ; M. Vlot, Auteur . - 2010 . - pp. 412–420.
Génie mécanique
Langues : Anglais (eng)
in Materials and corrosion > Vol. 61 N° 5 (Mai 2010) . - pp. 412–420
Mots-clés : accelerated testing; alloy coating; automotive; confined zone; perforation corrosion Résumé : Panels coated by hot dipping with zinc (HDG), Zn–5Al (Galfan) and Zn–1.5Al–1.5Mg coatings at different thicknesses were phosphated and painted on an industrial line. Crevice panels with non-painted bare parts modelling conditions in hem flanges, reference panels with open surfaces and formed non-painted panels were exposed to a cyclic accelerated automotive test. Zn–Al–Mg coatings with the thickness of 10 µm provided similar or even better protection than HDG and Galfan at 20 µm in both confined and open configurations. In comparison to 10-µm HDG, the Zn–Al–Mg coating delayed red rust appearance in crevices by a factor of 2 and the maximal depth of corrosion in the steel substrate was by 42% lower. Confined areas were more corroded than open surfaces. For HDG, the time to red rust appearance dropped by 50–75%, corrosion attack in steel was from 3.5 to 7 times deeper and mass gain was about 2.3 times higher in crevices than on open surfaces. Corrosion of Zn–Al–Mg may be more affected by local environmental conditions created by the crevice configuration than for HDG. Red rust appearance on formed panels of 20-µm Galfan, 7-, 10- and 14-µm Zn–Al–Mg was delayed to 10-µm HDG by a factor of 2.8, 3.5, 3.8 and >4.5, respectively. No adverse effect of forming was noticed. The results indicate that 2- to 3-fold reduction of the coating thickness for Zn–Al–Mg alloy coatings in comparison to traditional HDG may be possible without compromising the corrosion performance. En ligne : http://onlinelibrary.wiley.com/doi/10.1002/maco.200905425/abstract