Détail de l'auteur
Auteur Chaturvedi, D. K. |
Documents disponibles écrits par cet auteur (1)



Neurofuzzy power system stabilizer / Chaturvedi, D. K. in IEEE transactions on energy conversion, Vol. 23 n°3 (Septembre 2008)
![]()
[article]
Titre : Neurofuzzy power system stabilizer Type de document : texte imprimé Auteurs : Chaturvedi, D. K., Auteur ; Malik, O. P., Auteur Année de publication : 2008 Article en page(s) : pp. 887 - 894 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Control engineering computing fuzzy control inference mechanisms neurocontrollers power system stability Résumé : An adaptive fuzzy logic power system stabilizer (AFPSS) consisting of a generalized neuron (GN)-based predictor and a fuzzy logic controller (FLC) is described. The inference mechanism of the FLC is represented by a rule-base and a database. Two parameters, decided on the basis of the GN-predictor output and the current system conditions, are used to tune the AFPSS. This mechanism of tuning makes the fuzzy logic-based power system stabilizer adaptive to changes in the operating conditions. Therefore, variation in the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter conventional PSS. The performance of the AFPSS has been tested by simulation and experimental studies. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4603061&sortType%3Das [...]
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 887 - 894[article] Neurofuzzy power system stabilizer [texte imprimé] / Chaturvedi, D. K., Auteur ; Malik, O. P., Auteur . - 2008 . - pp. 887 - 894.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 n°3 (Septembre 2008) . - pp. 887 - 894
Mots-clés : Control engineering computing fuzzy control inference mechanisms neurocontrollers power system stability Résumé : An adaptive fuzzy logic power system stabilizer (AFPSS) consisting of a generalized neuron (GN)-based predictor and a fuzzy logic controller (FLC) is described. The inference mechanism of the FLC is represented by a rule-base and a database. Two parameters, decided on the basis of the GN-predictor output and the current system conditions, are used to tune the AFPSS. This mechanism of tuning makes the fuzzy logic-based power system stabilizer adaptive to changes in the operating conditions. Therefore, variation in the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter conventional PSS. The performance of the AFPSS has been tested by simulation and experimental studies. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4603061&sortType%3Das [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire