Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Georgoulas, G.
Documents disponibles écrits par cet auteur
Affiner la rechercheAsynchronous machine rotor fault diagnosis technique using complex wavelets / Tsoumas, I. P. in IEEE transactions on energy conversion, Vol. 23 n°2 (Juin 2008)
[article]
in IEEE transactions on energy conversion > Vol. 23 n°2 (Juin 2008) . - pp. 444 - 459
Titre : Asynchronous machine rotor fault diagnosis technique using complex wavelets Type de document : texte imprimé Auteurs : Tsoumas, I. P., Auteur ; Georgoulas, G., Auteur ; Mitronikas, E. D., Auteur Année de publication : 2008 Article en page(s) : pp. 444 - 459 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Asynchronous machines; fault diagnosis; feature extraction; rotors; spectral analysis; support vector machines; wavelet transforms Résumé : This paper introduces a novel approach for the detection of rotor faults in asynchronous machines, based on wavelet analysis of the stator phase current. To be more specific, the measured stator phase current is filtered through a complex wavelet. Theoretical analysis validates that the spectrum of the modulus of the result of the filtering is free from the fundamental supply frequency component, and the fault characteristics can be highlighted. This is advantageous, especially if the induction machine operates at low slip values, where the characteristic frequency components of the rotor fault are very close to the fundamental frequency component. At the same time, by matching the wavelet function to the frequencies of the faulty components, a narrow bandpass filter at the frequency region of the fault characteristic spectral components is obtained. Furthermore, in the context of this paper, features extracted using the proposed technique are used as input to a support vector machine classifier that is employed for the detection of the rotor fault. Simulation and experimental results demonstrate the effectiveness of the proposed technique. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4378206&sortType%3Das [...] [article] Asynchronous machine rotor fault diagnosis technique using complex wavelets [texte imprimé] / Tsoumas, I. P., Auteur ; Georgoulas, G., Auteur ; Mitronikas, E. D., Auteur . - 2008 . - pp. 444 - 459.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 n°2 (Juin 2008) . - pp. 444 - 459
Mots-clés : Asynchronous machines; fault diagnosis; feature extraction; rotors; spectral analysis; support vector machines; wavelet transforms Résumé : This paper introduces a novel approach for the detection of rotor faults in asynchronous machines, based on wavelet analysis of the stator phase current. To be more specific, the measured stator phase current is filtered through a complex wavelet. Theoretical analysis validates that the spectrum of the modulus of the result of the filtering is free from the fundamental supply frequency component, and the fault characteristics can be highlighted. This is advantageous, especially if the induction machine operates at low slip values, where the characteristic frequency components of the rotor fault are very close to the fundamental frequency component. At the same time, by matching the wavelet function to the frequencies of the faulty components, a narrow bandpass filter at the frequency region of the fault characteristic spectral components is obtained. Furthermore, in the context of this paper, features extracted using the proposed technique are used as input to a support vector machine classifier that is employed for the detection of the rotor fault. Simulation and experimental results demonstrate the effectiveness of the proposed technique. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4378206&sortType%3Das [...]