Détail de l'auteur
Auteur Papaefthymiou, G. |
Documents disponibles écrits par cet auteur (1)



MCMC for wind power simulation / Papaefthymiou, G. in IEEE transactions on energy conversion, Vol. 23 N°1 (Mars 2008)
![]()
[article]
Titre : MCMC for wind power simulation Type de document : texte imprimé Auteurs : Papaefthymiou, G., Auteur ; Klockl, B., Auteur Année de publication : 2008 Article en page(s) : pp. 234 - 240 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Markov processes Monte Carlo methods correlation power system simulation probability wind Résumé : This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal power data resolution. The estimation quality of the stochastic model is positively influenced since in the power domain, a lower number of independent parameters is estimated from a given amount of recorded data. The simulation results prove that this method offers excellent fit for both the probability density function and the autocorrelation function of the generated wind power time series. The method is a first step toward simple stochastic black-box models for wind generation. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4453993&sortType%3Das [...]
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 234 - 240[article] MCMC for wind power simulation [texte imprimé] / Papaefthymiou, G., Auteur ; Klockl, B., Auteur . - 2008 . - pp. 234 - 240.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 234 - 240
Mots-clés : Markov processes Monte Carlo methods correlation power system simulation probability wind Résumé : This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal power data resolution. The estimation quality of the stochastic model is positively influenced since in the power domain, a lower number of independent parameters is estimated from a given amount of recorded data. The simulation results prove that this method offers excellent fit for both the probability density function and the autocorrelation function of the generated wind power time series. The method is a first step toward simple stochastic black-box models for wind generation. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4453993&sortType%3Das [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire