Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Po-Hung Chen
Documents disponibles écrits par cet auteur
Affiner la recherchePumped-storage scheduling using evolutionary particle swarm optimization / Po-Hung Chen in IEEE transactions on energy conversion, Vol. 23 N°1 (Mars 2008)
[article]
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 294 - 301
Titre : Pumped-storage scheduling using evolutionary particle swarm optimization Type de document : texte imprimé Auteurs : Po-Hung Chen, Auteur Année de publication : 2008 Article en page(s) : pp. 294 - 301 Note générale : Energy conversion Langues : Anglais (eng) Mots-clés : Decoding; encoding; evolutionary computation; hydrothermal power systems; particle swarm optimisation; pumped-storage power stations; scheduling Résumé : This paper presents new solution algorithms based on an evolutionary particle swarm optimization (EPSO) for solving the pumped-storage (P/S) scheduling problem. The proposed EPSO approach combines a basic particle swarm optimization (PSO) with binary encoding/decoding techniques as well as a mutation operation. The binary encoding/decoding techniques are adopted to model the discrete characteristics of a P/S plant. The mutation operation is applied to accelerate convergence and escape local optimums. The optimal generation schedules for both P/S and thermal units are concurrently obtained within the evolutionary process of a scoring function. Therefore, hydrothermal iteration is no longer needed. The proposed approach is applied with great success to an actual utility system consisting of four P/S units and 34 thermal units. Experimental results indicate the attractive properties of the EPSO approach in a practical application, namely, a highly optimal solution and robust convergence behavior. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4453979&sortType%3Das [...] [article] Pumped-storage scheduling using evolutionary particle swarm optimization [texte imprimé] / Po-Hung Chen, Auteur . - 2008 . - pp. 294 - 301.
Energy conversion
Langues : Anglais (eng)
in IEEE transactions on energy conversion > Vol. 23 N°1 (Mars 2008) . - pp. 294 - 301
Mots-clés : Decoding; encoding; evolutionary computation; hydrothermal power systems; particle swarm optimisation; pumped-storage power stations; scheduling Résumé : This paper presents new solution algorithms based on an evolutionary particle swarm optimization (EPSO) for solving the pumped-storage (P/S) scheduling problem. The proposed EPSO approach combines a basic particle swarm optimization (PSO) with binary encoding/decoding techniques as well as a mutation operation. The binary encoding/decoding techniques are adopted to model the discrete characteristics of a P/S plant. The mutation operation is applied to accelerate convergence and escape local optimums. The optimal generation schedules for both P/S and thermal units are concurrently obtained within the evolutionary process of a scoring function. Therefore, hydrothermal iteration is no longer needed. The proposed approach is applied with great success to an actual utility system consisting of four P/S units and 34 thermal units. Experimental results indicate the attractive properties of the EPSO approach in a practical application, namely, a highly optimal solution and robust convergence behavior. En ligne : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4453979&sortType%3Das [...]