Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. Fartaj
Documents disponibles écrits par cet auteur
Affiner la recherchePerformance characteristics of a microscale ranque–hilsch vortex tube / A. F. Hamoudi in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 10 (Octobre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Titre : Performance characteristics of a microscale ranque–hilsch vortex tube Type de document : texte imprimé Auteurs : A. F. Hamoudi, Auteur ; A. Fartaj, Auteur ; G. W. Rankin, Auteur Année de publication : 2009 Article en page(s) : 8 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure; flow (Dynamics); temperature; Reynolds number; microscale devices; vortices; geometry; performance characterization; valves; testing performance Résumé : The results of an experimental investigation of the energy separation performance of a microscale Ranque–Hilsch vortex tube are presented. The supply channel Reynolds number of a microscale Ranque–Hilsch vortex tube is varied over a considerable range, which extends into the laminar flow regime in order to determine the minimum conditions for cooling. Experiments are conducted for a fixed geometry and control valve setting. At low Reynolds numbers based on the inlet tube hydraulic diameter and average velocity, the results exhibit an increase in dimensionless temperature in both the hot and cold outlets as the Reynolds number is increased from zero, reaching maximum values below 500 and 1000, respectively. The hot outlet dimensionless temperature decreases after reaching its maximum and achieves a minimum value at a Reynolds number below 1500. It then increases steadily with further increases in Reynolds number. The cold outlet dimensionless temperature decreases steadily after the maximum to become negative at a Reynolds number of approximately 1800. This implies that the cooling effect occurs at Reynolds numbers consistent with turbulent flow. The performance characteristics of the microscale vortex tube operating at higher inlet pressures of 200kPa, 300kPa, and 400kPa with an average inlet temperature of 293.6K are also presented for cold air mass ratio values over the range of 0.05–0.95. An increase in the inlet pressure causes the values of the dimensionless cold temperature difference to increase over the whole range of the cold air mass fraction. An unstable operation is observed at a length to diameter ratio of approximately 10, causing radial mixing between the cold and hot flow streams and a dramatic change in the cold mass flow fraction plot. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...] [article] Performance characteristics of a microscale ranque–hilsch vortex tube [texte imprimé] / A. F. Hamoudi, Auteur ; A. Fartaj, Auteur ; G. W. Rankin, Auteur . - 2009 . - 8 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 10 (Octobre 2008) . - 8 p.
Mots-clés : Pressure; flow (Dynamics); temperature; Reynolds number; microscale devices; vortices; geometry; performance characterization; valves; testing performance Résumé : The results of an experimental investigation of the energy separation performance of a microscale Ranque–Hilsch vortex tube are presented. The supply channel Reynolds number of a microscale Ranque–Hilsch vortex tube is varied over a considerable range, which extends into the laminar flow regime in order to determine the minimum conditions for cooling. Experiments are conducted for a fixed geometry and control valve setting. At low Reynolds numbers based on the inlet tube hydraulic diameter and average velocity, the results exhibit an increase in dimensionless temperature in both the hot and cold outlets as the Reynolds number is increased from zero, reaching maximum values below 500 and 1000, respectively. The hot outlet dimensionless temperature decreases after reaching its maximum and achieves a minimum value at a Reynolds number below 1500. It then increases steadily with further increases in Reynolds number. The cold outlet dimensionless temperature decreases steadily after the maximum to become negative at a Reynolds number of approximately 1800. This implies that the cooling effect occurs at Reynolds numbers consistent with turbulent flow. The performance characteristics of the microscale vortex tube operating at higher inlet pressures of 200kPa, 300kPa, and 400kPa with an average inlet temperature of 293.6K are also presented for cold air mass ratio values over the range of 0.05–0.95. An increase in the inlet pressure causes the values of the dimensionless cold temperature difference to increase over the whole range of the cold air mass fraction. An unstable operation is observed at a length to diameter ratio of approximately 10, causing radial mixing between the cold and hot flow streams and a dramatic change in the cold mass flow fraction plot. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27341 [...]