[article] inIndustrial & engineering chemistry research > Vol. 49 N° 3 (Fevrier 2010) . - pp. 1222–1228
Titre : |
13C NMR studies on the dissolution mechanisms of carbon dioxide in amine-containing aqueous solvents at high pressures toward an integrated coal gasification combined cycle−carbon capture and storage process |
Type de document : |
texte imprimé |
Auteurs : |
Kin-ya Tomizaki, Auteur ; Mitsuhiro Kanakubo, Auteur ; Hiroshi Nanjo, Auteur ; Shinkichi Shimizu, Auteur ; Masami Onoda, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
pp. 1222–1228 |
Note générale : |
Industrial chemistry |
Langues : |
Anglais (eng) |
Mots-clés : |
13C NMR--Studies--Dissolution Mechanisms--Carbon Dioxide--Amine-Containing--Aqueous Solvents--High Pressures toward--Integrated Coal Gasification Combined--Cycle− Carbon--Capture--Storage Process |
Résumé : |
Carbon dioxide (CO2) capture and storage (CCS) technology has emerged and become a promising tool for the control of greenhouse gas emissions. CCS is applicable to the integrated coal gasification combined cycle (IGCC) equipped with a water-gas shift reaction (IGCC−CCS). In our previous studies, we obtained novel chemical absorbents suitable for IGCC−CCS and examined vapor−liquid equilibria of the absorbents. However, the mechanisms of dissolution of pressurized CO2 into the solvents (e.g., determination of the fractions of CO2 absorbed chemically and physically under high CO2 pressure conditions) were not clear, even though this information is very important for estimation of the energy requirements for the CCS process. We examined the usefulness of 13C NMR spectroscopy to determine CO2 solubility and the components of inorganic carbon species (bicarbonate/carbonate and molecular CO2) in six different amine-containing aqueous solvents, at temperatures ranging from 40 to 70 °C and CO2 pressures ranging from 0.5 to 4 MPa. We found that (i) the amounts of CO2 physically absorbed into the solvents increased with increasing CO2 pressure and comprised 15−30% of the total CO2 in all the solvents at 40 °C and 4 MPa, and (ii) the solubility determined by 13C NMR spectroscopic and vapor−liquid equilibrium measurements were in good agreement over the CO2 pressure range examined. The results indicate that we could not only obtain CO2 solubility data but also identify the inorganic carbon species in the solvents by quantitative 13C NMR spectroscopy. |
Note de contenu : |
Bibiogr. |
ISSN : |
0888-5885 |
En ligne : |
http://pubs.acs.org/doi/abs/10.1021/ie900870w |
[article] 13C NMR studies on the dissolution mechanisms of carbon dioxide in amine-containing aqueous solvents at high pressures toward an integrated coal gasification combined cycle−carbon capture and storage process [texte imprimé] / Kin-ya Tomizaki, Auteur ; Mitsuhiro Kanakubo, Auteur ; Hiroshi Nanjo, Auteur ; Shinkichi Shimizu, Auteur ; Masami Onoda, Auteur . - 2010 . - pp. 1222–1228. Industrial chemistry Langues : Anglais ( eng) in Industrial & engineering chemistry research > Vol. 49 N° 3 (Fevrier 2010) . - pp. 1222–1228
Mots-clés : |
13C NMR--Studies--Dissolution Mechanisms--Carbon Dioxide--Amine-Containing--Aqueous Solvents--High Pressures toward--Integrated Coal Gasification Combined--Cycle− Carbon--Capture--Storage Process |
Résumé : |
Carbon dioxide (CO2) capture and storage (CCS) technology has emerged and become a promising tool for the control of greenhouse gas emissions. CCS is applicable to the integrated coal gasification combined cycle (IGCC) equipped with a water-gas shift reaction (IGCC−CCS). In our previous studies, we obtained novel chemical absorbents suitable for IGCC−CCS and examined vapor−liquid equilibria of the absorbents. However, the mechanisms of dissolution of pressurized CO2 into the solvents (e.g., determination of the fractions of CO2 absorbed chemically and physically under high CO2 pressure conditions) were not clear, even though this information is very important for estimation of the energy requirements for the CCS process. We examined the usefulness of 13C NMR spectroscopy to determine CO2 solubility and the components of inorganic carbon species (bicarbonate/carbonate and molecular CO2) in six different amine-containing aqueous solvents, at temperatures ranging from 40 to 70 °C and CO2 pressures ranging from 0.5 to 4 MPa. We found that (i) the amounts of CO2 physically absorbed into the solvents increased with increasing CO2 pressure and comprised 15−30% of the total CO2 in all the solvents at 40 °C and 4 MPa, and (ii) the solubility determined by 13C NMR spectroscopic and vapor−liquid equilibrium measurements were in good agreement over the CO2 pressure range examined. The results indicate that we could not only obtain CO2 solubility data but also identify the inorganic carbon species in the solvents by quantitative 13C NMR spectroscopy. |
Note de contenu : |
Bibiogr. |
ISSN : |
0888-5885 |
En ligne : |
http://pubs.acs.org/doi/abs/10.1021/ie900870w |
|