Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur X. Carbonneau
Documents disponibles écrits par cet auteur
Affiner la rechercheAssessing rotation/curvature corrections to eddy-viscosity models in the calculations of centrifugal-compressor flows / Dufour, G. in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 9 (Septembre 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 9 (Septembre 2008) . - 10 p.
Titre : Assessing rotation/curvature corrections to eddy-viscosity models in the calculations of centrifugal-compressor flows Type de document : texte imprimé Auteurs : Dufour, G., Auteur ; J.-B. Cazalbou, Auteur ; X. Carbonneau, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure; rotation; flow (dynamics); turbulence; viscosity; compressors; impellers; errors; ncertainty; modeling Résumé : Rotation and curvature (RC) effects on turbulence are expected to impact losses and flow structure in turbomachines. This paper examines two recent eddy-viscosity-model corrections devised to account for these effects: the Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature ,” Aerosp. Sci. Technol., 1(5), pp. 297–302) correction to the model of Spalart and Allmaras (1994, “A One-Equation Turbulence Model for Aerodynamic Flows ,” Rech. Aerosp., 1, pp. 5–21) and the correction of Cazalbou (2005, “Two-Equation Modeling of Turbulent Rotating Flows ,” Phys. Fluids., 17, p. 055110) to the (k,ϵ) model. The method of verification and validation is applied to assess the impact of these corrections on the computation of a centrifugal-compressor test case. First, a review of RC effects on turbulence as they apply to centrifugal compressors is made. The two corrected models are then presented. Second, the Radiver open test case (Ziegler K. U., Gallus, H. E., and Niehuis R., 2003, “A Study on Impeller Diffuser Interaction Part 1: Influence on the Performance ,” ASME J. Turbomach, 125, pp. 173–182) is used as a basis for the assessment of the two corrections. After a physical-consistency analysis, the Richardson extrapolation is applied to quantify the numerical errors involved in all the calculations. Finally, experimental data are used to perform validation for both global and local predictions. The consistency analysis shows that both corrections lead to significant changes in the turbulent field, in perfect agreement with the underlying theoretical considerations. The uncertainty analysis shows that the predictions of the global performances are more sensitive to grid refinement than they are to RC turbulence modeling. However, the opposite conclusion is drawn with regard to the prediction of some local flow properties: Improvements are obtained with the RC corrections, the best results being observed for the RC-corrected (k,ϵ) model. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleID=1 [...] [article] Assessing rotation/curvature corrections to eddy-viscosity models in the calculations of centrifugal-compressor flows [texte imprimé] / Dufour, G., Auteur ; J.-B. Cazalbou, Auteur ; X. Carbonneau, Auteur . - 2009 . - 10 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 9 (Septembre 2008) . - 10 p.
Mots-clés : Pressure; rotation; flow (dynamics); turbulence; viscosity; compressors; impellers; errors; ncertainty; modeling Résumé : Rotation and curvature (RC) effects on turbulence are expected to impact losses and flow structure in turbomachines. This paper examines two recent eddy-viscosity-model corrections devised to account for these effects: the Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature ,” Aerosp. Sci. Technol., 1(5), pp. 297–302) correction to the model of Spalart and Allmaras (1994, “A One-Equation Turbulence Model for Aerodynamic Flows ,” Rech. Aerosp., 1, pp. 5–21) and the correction of Cazalbou (2005, “Two-Equation Modeling of Turbulent Rotating Flows ,” Phys. Fluids., 17, p. 055110) to the (k,ϵ) model. The method of verification and validation is applied to assess the impact of these corrections on the computation of a centrifugal-compressor test case. First, a review of RC effects on turbulence as they apply to centrifugal compressors is made. The two corrected models are then presented. Second, the Radiver open test case (Ziegler K. U., Gallus, H. E., and Niehuis R., 2003, “A Study on Impeller Diffuser Interaction Part 1: Influence on the Performance ,” ASME J. Turbomach, 125, pp. 173–182) is used as a basis for the assessment of the two corrections. After a physical-consistency analysis, the Richardson extrapolation is applied to quantify the numerical errors involved in all the calculations. Finally, experimental data are used to perform validation for both global and local predictions. The consistency analysis shows that both corrections lead to significant changes in the turbulent field, in perfect agreement with the underlying theoretical considerations. The uncertainty analysis shows that the predictions of the global performances are more sensitive to grid refinement than they are to RC turbulence modeling. However, the opposite conclusion is drawn with regard to the prediction of some local flow properties: Improvements are obtained with the RC corrections, the best results being observed for the RC-corrected (k,ϵ) model. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleID=1 [...]