Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur P. B. Loke
Documents disponibles écrits par cet auteur
Affiner la rechercheDrop formation in non-newtonian jets at low Reynolds numbers / V. Dravid in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 8 (Août 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 8 p.
Titre : Drop formation in non-newtonian jets at low Reynolds numbers Type de document : texte imprimé Auteurs : V. Dravid, Auteur ; P. B. Loke, Auteur ; C. M. Corvalan, Auteur Année de publication : 2009 Article en page(s) : 8 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Drops; shear (mechanics); jets; atellites; Reynolds number; pinch effect (plasma physics); equations; water; engineering simulation; pressure; flow (dynamics) Résumé : The objective of this study was to develop an experimentally verified computational model that accurately predicts evolution of shear-thinning liquid jets. A secondary objective was to investigate the formation of satellite drops and to determine conditions under which their diameter can be controlled. The model employs the Galerkin finite/element approach to solve the complete two-dimensional set of axisymmetric governing equations and the corresponding kinematic and dynamic boundary conditions at the free surface. The effect of shear-thinning behavior on breakup was studied in detail for the case of an infinitely long non-Newtonian jet. It was found that shear-thinning behavior may be useful in controlling satellite drop sizes. (We observe that increasing the shear-thinning behavior at Re∼5 leads to an initial increase in the satellite drop size, followed by a subsequent decrease.) Comparison of model predictions with experimental data is presented for the case of a shear-thinning non-Newtonian jet. The experimental liquid was pumped through a capillary and drop shapes obtained using a high speed camera. The experimentally obtained shapes were compared to those predicted by the model and found to be in good agreement. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...] [article] Drop formation in non-newtonian jets at low Reynolds numbers [texte imprimé] / V. Dravid, Auteur ; P. B. Loke, Auteur ; C. M. Corvalan, Auteur . - 2009 . - 8 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 8 p.
Mots-clés : Drops; shear (mechanics); jets; atellites; Reynolds number; pinch effect (plasma physics); equations; water; engineering simulation; pressure; flow (dynamics) Résumé : The objective of this study was to develop an experimentally verified computational model that accurately predicts evolution of shear-thinning liquid jets. A secondary objective was to investigate the formation of satellite drops and to determine conditions under which their diameter can be controlled. The model employs the Galerkin finite/element approach to solve the complete two-dimensional set of axisymmetric governing equations and the corresponding kinematic and dynamic boundary conditions at the free surface. The effect of shear-thinning behavior on breakup was studied in detail for the case of an infinitely long non-Newtonian jet. It was found that shear-thinning behavior may be useful in controlling satellite drop sizes. (We observe that increasing the shear-thinning behavior at Re∼5 leads to an initial increase in the satellite drop size, followed by a subsequent decrease.) Comparison of model predictions with experimental data is presented for the case of a shear-thinning non-Newtonian jet. The experimental liquid was pumped through a capillary and drop shapes obtained using a high speed camera. The experimentally obtained shapes were compared to those predicted by the model and found to be in good agreement. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...]