Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Tetsuo Shoji
Documents disponibles écrits par cet auteur
Affiner la rechercheComputational simulation on performance enhancement of cold gas dynamic spray processes with electrostatic assist / Hidemasa Takana in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 8 (Août 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 7 p.
Titre : Computational simulation on performance enhancement of cold gas dynamic spray processes with electrostatic assist Type de document : texte imprimé Auteurs : Hidemasa Takana, Auteur ; Kazuhiro Ogawa, Auteur ; Tetsuo Shoji, Auteur Année de publication : 2009 Article en page(s) : 7 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Force; flow (dynamics); particulate matter; simulation; sprays; flight; coating processes; coatings; shock waves; drag (fluid dynamics); lift (fluid dynamics) Résumé : A real-time computational simulation on the entire cold spray process is carried out by the integrated model of compressible flow field, splat formation model, and coating formation model, in order to provide the fundamental data for the advanced high performance cold gas dynamic spray process with electrostatic acceleration. In this computation, viscous drag force, flow acceleration added mass, gravity, Basset history force, Saffman lift force, Brownian motion, thermophoresis, and electrostatic force are all considered in the particle equation of motion for the more realistic prediction of in-flight nano∕microparticle characteristics with electrostatic force and also for the detailed analysis of particle-shock-wave-substrate interaction. Computational results show that electrostatic acceleration can broaden the smallest size of applicable particle diameter for successful adhesion; as a result, wider coating can be realized. The utilization of electrostatic acceleration enhances the performance of cold dynamic spray process even under the presence of unavoidable shock wave. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...] [article] Computational simulation on performance enhancement of cold gas dynamic spray processes with electrostatic assist [texte imprimé] / Hidemasa Takana, Auteur ; Kazuhiro Ogawa, Auteur ; Tetsuo Shoji, Auteur . - 2009 . - 7 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 7 p.
Mots-clés : Force; flow (dynamics); particulate matter; simulation; sprays; flight; coating processes; coatings; shock waves; drag (fluid dynamics); lift (fluid dynamics) Résumé : A real-time computational simulation on the entire cold spray process is carried out by the integrated model of compressible flow field, splat formation model, and coating formation model, in order to provide the fundamental data for the advanced high performance cold gas dynamic spray process with electrostatic acceleration. In this computation, viscous drag force, flow acceleration added mass, gravity, Basset history force, Saffman lift force, Brownian motion, thermophoresis, and electrostatic force are all considered in the particle equation of motion for the more realistic prediction of in-flight nano∕microparticle characteristics with electrostatic force and also for the detailed analysis of particle-shock-wave-substrate interaction. Computational results show that electrostatic acceleration can broaden the smallest size of applicable particle diameter for successful adhesion; as a result, wider coating can be realized. The utilization of electrostatic acceleration enhances the performance of cold dynamic spray process even under the presence of unavoidable shock wave. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...]