Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur B. Samareh
Documents disponibles écrits par cet auteur
Affiner la rechercheDense particulate flow in a cold gas dynamic spray system / B. Samareh in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 8 (Août 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 11 p.
Titre : Dense particulate flow in a cold gas dynamic spray system Type de document : texte imprimé Auteurs : B. Samareh, Auteur ; A. Dolatabadi, Auteur Année de publication : 2009 Article en page(s) : 11 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Pressure; flow (dynamics); particulate matter; shock (mechanics); nozzles; sprays Résumé : The effect of particle-gas and particle-particle interactions in a cold spray process is studied when the particle loading is high. To examine the effect of the presence of a dense particulate flow on the supersonic gas, an Eulerian-Eulerian approach is used. It is found that when the volume fraction of the injected particles is increased, the turbulence of the gas phase will be augmented by the motion of particles and consequently, the shape, the strength, and the location of the compression and expansion waves will be altered. Shock-particle interactions are demonstrated for various volume fractions. Another important parameter, which will affect the spraying deposition efficiency, is the substrate stand-off distance. It is found that the stagnation pressure alternates for different stand-off distances because of the formation of compression and expansion waves outside the nozzle exit. The particle normal velocity on impact is a strong function of the stagnation pressure on the substrate as particles must pierce through the bow shock formed on that region. The effect of the particle size and number density are also studied for different loading conditions. It is found that small and large particles behave differently as they pass through shock diamonds and the bow shock, i.e., in the case of very small particles, as the loading increases, the impact velocity increases, while, for the large particles, the trend is reversed. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...] [article] Dense particulate flow in a cold gas dynamic spray system [texte imprimé] / B. Samareh, Auteur ; A. Dolatabadi, Auteur . - 2009 . - 11 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 8 (Août 2008) . - 11 p.
Mots-clés : Pressure; flow (dynamics); particulate matter; shock (mechanics); nozzles; sprays Résumé : The effect of particle-gas and particle-particle interactions in a cold spray process is studied when the particle loading is high. To examine the effect of the presence of a dense particulate flow on the supersonic gas, an Eulerian-Eulerian approach is used. It is found that when the volume fraction of the injected particles is increased, the turbulence of the gas phase will be augmented by the motion of particles and consequently, the shape, the strength, and the location of the compression and expansion waves will be altered. Shock-particle interactions are demonstrated for various volume fractions. Another important parameter, which will affect the spraying deposition efficiency, is the substrate stand-off distance. It is found that the stagnation pressure alternates for different stand-off distances because of the formation of compression and expansion waves outside the nozzle exit. The particle normal velocity on impact is a strong function of the stagnation pressure on the substrate as particles must pierce through the bow shock formed on that region. The effect of the particle size and number density are also studied for different loading conditions. It is found that small and large particles behave differently as they pass through shock diamonds and the bow shock, i.e., in the case of very small particles, as the loading increases, the impact velocity increases, while, for the large particles, the trend is reversed. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27329 [...]