Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David S. Miklosovic
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalytic and experimental investigation of dihedral configurations of three-winglet planforms / David S. Miklosovic in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 7 (Juillet 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 7 (Juillet 2008) . - 10 p.
Titre : Analytic and experimental investigation of dihedral configurations of three-winglet planforms Type de document : texte imprimé Auteurs : David S. Miklosovic, Auteur Année de publication : 2014 Article en page(s) : 10 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Dihedral configurations; three-winglet planforms Résumé : An analytic and experimental effort was undertaken to assess the effectiveness and efficiency of three winglets mounted chordwise to the tip of a rectangular wing. The winglets, with an aspect ratio of 4.6, were mounted on a half-span wing having an effective aspect ratio of 6.29. 13 configurations of varying dihedral arrangements were analyzed with a vortex lattice method and tested in a low-speed wind tunnel at a Reynolds number of 600,000. While the analytic method provided fair agreement with the experimental results, the predicted trends in lift, drag, and (to a lesser degree) pitching moment were in good agreement. The analytic distributions of wake velocity, circulation, and downwash angle verified that highly nonplanar configurations tended to reduce and diffuse the regions of highest circulation and to create more moderate downwash angles in the wake. This was manifest as an overall drag reduction. More specifically, the results showed that the winglets could be placed in various optimum orientations to increase the lift coefficient as much as 65% at the same angle of attack, decrease the drag coefficient as much as 54% at the same lift coefficient, or improve the maximum L∕D by up to 57%. The most dramatic findings from this study show that positioning the winglet dihedral angles had the result of adjusting the magnitude and slope of the pitching moment coefficient. These observations suggest that multiple winglet dihedral variations may be feasible for use as actively controlled surfaces to improve the performance of aircraft at various flight conditions and to “tune” the longitudinal stability characteristics of the configuration. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Analytic and experimental investigation of dihedral configurations of three-winglet planforms [texte imprimé] / David S. Miklosovic, Auteur . - 2014 . - 10 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 7 (Juillet 2008) . - 10 p.
Mots-clés : Dihedral configurations; three-winglet planforms Résumé : An analytic and experimental effort was undertaken to assess the effectiveness and efficiency of three winglets mounted chordwise to the tip of a rectangular wing. The winglets, with an aspect ratio of 4.6, were mounted on a half-span wing having an effective aspect ratio of 6.29. 13 configurations of varying dihedral arrangements were analyzed with a vortex lattice method and tested in a low-speed wind tunnel at a Reynolds number of 600,000. While the analytic method provided fair agreement with the experimental results, the predicted trends in lift, drag, and (to a lesser degree) pitching moment were in good agreement. The analytic distributions of wake velocity, circulation, and downwash angle verified that highly nonplanar configurations tended to reduce and diffuse the regions of highest circulation and to create more moderate downwash angles in the wake. This was manifest as an overall drag reduction. More specifically, the results showed that the winglets could be placed in various optimum orientations to increase the lift coefficient as much as 65% at the same angle of attack, decrease the drag coefficient as much as 54% at the same lift coefficient, or improve the maximum L∕D by up to 57%. The most dramatic findings from this study show that positioning the winglet dihedral angles had the result of adjusting the magnitude and slope of the pitching moment coefficient. These observations suggest that multiple winglet dihedral variations may be feasible for use as actively controlled surfaces to improve the performance of aircraft at various flight conditions and to “tune” the longitudinal stability characteristics of the configuration. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]