Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Masashi Ichimiya
Documents disponibles écrits par cet auteur
Affiner la rechercheThe effects of splitter plates on turbulent boundary layer on a long flat plate near the trailing edge / Yoshifumi Jodai in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 5 (Mai 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 5 (Mai 2008) . - 7 p.
Titre : The effects of splitter plates on turbulent boundary layer on a long flat plate near the trailing edge Type de document : texte imprimé Auteurs : Yoshifumi Jodai, Auteur ; Yoshikazu Takahashi, Auteur ; Masashi Ichimiya, Auteur Année de publication : 2009 Article en page(s) : 7 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Boundary layers; plates (structures); boundary layer turbulence; flat plates; pressure; flow (dynamics) Résumé : An experimental investigation has been made on a turbulent boundary layer near the trailing edge on a long flat plate. The flow was controlled by an additional splitter plate fitted to the trailing edge along the wake centerline. The length of the splitter plate, l, was varied from a half, to five times the trailing edge thickness, h. Measurements of base pressure behind the trailing edge and of mean velocity and pressure distribution in the turbulent boundary layer on the flat plate were made under the freestream zero-pressure gradient. The absolute value of the base pressure coefficient of the long flat plate was considerably smaller than that of the short flat plate without the splitter plate. A significant increase in the base pressure coefficient was achieved with the splitter plate (l∕h≧1), fitted to the long flat plate. Within an inner layer in the turbulent boundary layer near the trailing edge, the mean velocity increased more than that in the upstream position in the case without the splitter plate. With the splitter plate, however, the base pressure rise made the mean velocity distribution more closely approach that of a fully developed turbulent boundary layer. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] The effects of splitter plates on turbulent boundary layer on a long flat plate near the trailing edge [texte imprimé] / Yoshifumi Jodai, Auteur ; Yoshikazu Takahashi, Auteur ; Masashi Ichimiya, Auteur . - 2009 . - 7 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 5 (Mai 2008) . - 7 p.
Mots-clés : Boundary layers; plates (structures); boundary layer turbulence; flat plates; pressure; flow (dynamics) Résumé : An experimental investigation has been made on a turbulent boundary layer near the trailing edge on a long flat plate. The flow was controlled by an additional splitter plate fitted to the trailing edge along the wake centerline. The length of the splitter plate, l, was varied from a half, to five times the trailing edge thickness, h. Measurements of base pressure behind the trailing edge and of mean velocity and pressure distribution in the turbulent boundary layer on the flat plate were made under the freestream zero-pressure gradient. The absolute value of the base pressure coefficient of the long flat plate was considerably smaller than that of the short flat plate without the splitter plate. A significant increase in the base pressure coefficient was achieved with the splitter plate (l∕h≧1), fitted to the long flat plate. Within an inner layer in the turbulent boundary layer near the trailing edge, the mean velocity increased more than that in the upstream position in the case without the splitter plate. With the splitter plate, however, the base pressure rise made the mean velocity distribution more closely approach that of a fully developed turbulent boundary layer. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]