Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhaosheng Yu
Documents disponibles écrits par cet auteur
Affiner la rechercheA numerical and experimental study on the effect of the cone angle of the spindle in murata vortex spinning machine / Huifen Guo in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 3 (Mars 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 3 (Mars 2008) . - 5 p.
Titre : A numerical and experimental study on the effect of the cone angle of the spindle in murata vortex spinning machine Type de document : texte imprimé Auteurs : Huifen Guo, Auteur ; Xianglong An, Auteur ; Zhaosheng Yu, Auteur Année de publication : 2009 Article en page(s) : 5 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Spindles (textile machinery); yarns; nozzles; vortices; swirling flow; fluid dynamics; fibers; turbulence; exterior walls; air flow; computer simulation; spinning machinery; polyester fabrics; flow (dynamics) Résumé : To study the effect of the cone angle of the hollow spindle in the nozzle of Murata vortex spinning (MVS) on yarn properties, the k‐ε turbulence model is employed to simulate the airflow patterns inside the different nozzles with different spindle cone angles. A set of corresponding spinning experiments is designed to verify numerical predictions. The simulation results show that some factors, such as the counter-rotating vortex pair (CVP) over the spindle, high supersonic zone in the inlet of the swirling chamber, and the distribution of wall shear stress (WSS) along the outer wall of the spindle caused by variation of the cone angle of the spindle, are significantly related to fluid flow, and consequently to MVS yarn properties. A rational cone angle (Case 2) can form an axisymmetric CVP and high WSS, which can ensure sufficient twisting of the yarn and produce high quality yarn. The experimental results, which yarn properties spun using 100% cotton, 100% polyester, and polyester 70∕cotton 30 blends with different nozzles, are well consistent with the numerical study. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27301 [...] [article] A numerical and experimental study on the effect of the cone angle of the spindle in murata vortex spinning machine [texte imprimé] / Huifen Guo, Auteur ; Xianglong An, Auteur ; Zhaosheng Yu, Auteur . - 2009 . - 5 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 3 (Mars 2008) . - 5 p.
Mots-clés : Spindles (textile machinery); yarns; nozzles; vortices; swirling flow; fluid dynamics; fibers; turbulence; exterior walls; air flow; computer simulation; spinning machinery; polyester fabrics; flow (dynamics) Résumé : To study the effect of the cone angle of the hollow spindle in the nozzle of Murata vortex spinning (MVS) on yarn properties, the k‐ε turbulence model is employed to simulate the airflow patterns inside the different nozzles with different spindle cone angles. A set of corresponding spinning experiments is designed to verify numerical predictions. The simulation results show that some factors, such as the counter-rotating vortex pair (CVP) over the spindle, high supersonic zone in the inlet of the swirling chamber, and the distribution of wall shear stress (WSS) along the outer wall of the spindle caused by variation of the cone angle of the spindle, are significantly related to fluid flow, and consequently to MVS yarn properties. A rational cone angle (Case 2) can form an axisymmetric CVP and high WSS, which can ensure sufficient twisting of the yarn and produce high quality yarn. The experimental results, which yarn properties spun using 100% cotton, 100% polyester, and polyester 70∕cotton 30 blends with different nozzles, are well consistent with the numerical study. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27301 [...]