Détail de l'auteur
Auteur Ouguan Xu |
Documents disponibles écrits par cet auteur (2)



Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection / Yu Miao in Industrial & engineering chemistry research, Vol. 48 N° 24 (Décembre 2009)
![]()
[article]
Titre : Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection Type de document : texte imprimé Auteurs : Yu Miao, Auteur ; Hongye Su, Auteur ; Ouguan Xu, Auteur Année de publication : 2010 Article en page(s) : pp. 10903–10911 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Support--Vector--Regression--Approach--Simultaneous--Data--Reconciliation--Gross Error--Outlier Detection Résumé : Process data measurements are important for model fitting, process monitoring, control, optimization, and management decision making, and they are usually applied with parameter estimation. This paper applies the support vector (SV) regression approach as a framework for simultaneous data reconciliation and gross error or outlier detection in processes. SV regression minimizes regularized risk instead of maximum likelihood, and it is a compromise between empirical risk and model complexity. For data reconciliation, it is robust to random and gross errors or outliers, because loss functions are addressed as objective functions instead of least-squares. Furthermore, because of the robust nature of SV regressions, the coefficients of the SV regression itself have less effect on the reconciled results. Finally, a number of process and literature system simulation results show the features of the SV regression approach for data reconciliation proposed in this paper. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801629f
in Industrial & engineering chemistry research > Vol. 48 N° 24 (Décembre 2009) . - pp. 10903–10911[article] Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection [texte imprimé] / Yu Miao, Auteur ; Hongye Su, Auteur ; Ouguan Xu, Auteur . - 2010 . - pp. 10903–10911.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 24 (Décembre 2009) . - pp. 10903–10911
Mots-clés : Support--Vector--Regression--Approach--Simultaneous--Data--Reconciliation--Gross Error--Outlier Detection Résumé : Process data measurements are important for model fitting, process monitoring, control, optimization, and management decision making, and they are usually applied with parameter estimation. This paper applies the support vector (SV) regression approach as a framework for simultaneous data reconciliation and gross error or outlier detection in processes. SV regression minimizes regularized risk instead of maximum likelihood, and it is a compromise between empirical risk and model complexity. For data reconciliation, it is robust to random and gross errors or outliers, because loss functions are addressed as objective functions instead of least-squares. Furthermore, because of the robust nature of SV regressions, the coefficients of the SV regression itself have less effect on the reconciled results. Finally, a number of process and literature system simulation results show the features of the SV regression approach for data reconciliation proposed in this paper. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801629f Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection / Yu Miao in Industrial & engineering chemistry research, Vol. 48 N° 24 (Décembre 2009)
![]()
[article]
Titre : Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection Type de document : texte imprimé Auteurs : Yu Miao, Auteur ; Hongye Su, Auteur ; Ouguan Xu, Auteur Année de publication : 2010 Article en page(s) : pp. 10903–10911 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Support vector regression Outlier detection Résumé : Process data measurements are important for model fitting, process monitoring, control, optimization, and management decision making, and they are usually applied with parameter estimation. This paper applies the support vector (SV) regression approach as a framework for simultaneous data reconciliation and gross error or outlier detection in processes. SV regression minimizes regularized risk instead of maximum likelihood, and it is a compromise between empirical risk and model complexity. For data reconciliation, it is robust to random and gross errors or outliers, because loss functions are addressed as objective functions instead of least-squares. Furthermore, because of the robust nature of SV regressions, the coefficients of the SV regression itself have less effect on the reconciled results. Finally, a number of process and literature system simulation results show the features of the SV regression approach for data reconciliation proposed in this paper. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801629f
in Industrial & engineering chemistry research > Vol. 48 N° 24 (Décembre 2009) . - pp. 10903–10911[article] Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection [texte imprimé] / Yu Miao, Auteur ; Hongye Su, Auteur ; Ouguan Xu, Auteur . - 2010 . - pp. 10903–10911.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 24 (Décembre 2009) . - pp. 10903–10911
Mots-clés : Support vector regression Outlier detection Résumé : Process data measurements are important for model fitting, process monitoring, control, optimization, and management decision making, and they are usually applied with parameter estimation. This paper applies the support vector (SV) regression approach as a framework for simultaneous data reconciliation and gross error or outlier detection in processes. SV regression minimizes regularized risk instead of maximum likelihood, and it is a compromise between empirical risk and model complexity. For data reconciliation, it is robust to random and gross errors or outliers, because loss functions are addressed as objective functions instead of least-squares. Furthermore, because of the robust nature of SV regressions, the coefficients of the SV regression itself have less effect on the reconciled results. Finally, a number of process and literature system simulation results show the features of the SV regression approach for data reconciliation proposed in this paper. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801629f Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire