Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mike Gaster
Documents disponibles écrits par cet auteur
Affiner la rechercheHydrodynamics and sound generation of low speed planar jet / Victoria Suponitsky in Transactions of the ASME . Journal of fluids engineering, Vol. 130 N° 3 (Mars 2008)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 3 (Mars 2008) . - 8 p.
Titre : Hydrodynamics and sound generation of low speed planar jet Type de document : texte imprimé Auteurs : Victoria Suponitsky, Auteur ; Eldad Avital, Auteur ; Mike Gaster, Auteur Année de publication : 2009 Article en page(s) : 8 p. Note générale : Fluids engineering Langues : Anglais (eng) Mots-clés : Low speed planar jet; hydrodynamics Résumé : Hydrodynamics and sound radiation of a low speed planar jet with Re=3000 have been studied by large eddy simulation combined with Lighthill’s acoustic analogy. Jets evolving from both well-developed (parabolic) and undeveloped (top-hat) mean velocity profiles have been simulated. The results showed the following: (i) initial domination of a symmetrical mode for jets evolving from top-hat profiles and prevailing of an antisymmetrical mode resulting in a sinuous distortion of the potential core for jets evolving from parabolic profiles, and (ii) shape of a mean velocity profile has some effect on mean flow characteristics; however, the major differences were observed in the development of the fluctuations. Velocity fluctuations were significantly higher for jets evolving from a parabolic profile in the region beyond the end of the potential core before the flow reached a self-preserving state. To calculate the basic sound radiation, the sources in Lighthill’s equation were treated either as compact in all directions or as noncompact in the spanwise direction. The spanwise length of the computational domain was found to have a little effect on the results obtained with compact in all directions solution provided that spanwise length exceeds the correlation length. Results showed that the majority of sound was generated by the region beyond the end of the potential core. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27301 [...] [article] Hydrodynamics and sound generation of low speed planar jet [texte imprimé] / Victoria Suponitsky, Auteur ; Eldad Avital, Auteur ; Mike Gaster, Auteur . - 2009 . - 8 p.
Fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 130 N° 3 (Mars 2008) . - 8 p.
Mots-clés : Low speed planar jet; hydrodynamics Résumé : Hydrodynamics and sound radiation of a low speed planar jet with Re=3000 have been studied by large eddy simulation combined with Lighthill’s acoustic analogy. Jets evolving from both well-developed (parabolic) and undeveloped (top-hat) mean velocity profiles have been simulated. The results showed the following: (i) initial domination of a symmetrical mode for jets evolving from top-hat profiles and prevailing of an antisymmetrical mode resulting in a sinuous distortion of the potential core for jets evolving from parabolic profiles, and (ii) shape of a mean velocity profile has some effect on mean flow characteristics; however, the major differences were observed in the development of the fluctuations. Velocity fluctuations were significantly higher for jets evolving from a parabolic profile in the region beyond the end of the potential core before the flow reached a self-preserving state. To calculate the basic sound radiation, the sources in Lighthill’s equation were treated either as compact in all directions or as noncompact in the spanwise direction. The spanwise length of the computational domain was found to have a little effect on the results obtained with compact in all directions solution provided that spanwise length exceeds the correlation length. Results showed that the majority of sound was generated by the region beyond the end of the potential core. En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27301 [...]