Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Roberto Carlos Bittencourt
Documents disponibles écrits par cet auteur
Affiner la rechercheHybrid modeling of methane reformers. 3 / André L. Alberton in Industrial & engineering chemistry research, Vol. 48 N° 23 (Décembre 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 23 (Décembre 2009) . - pp. 10277–10283
Titre : Hybrid modeling of methane reformers. 3 : optimal geometries of perforated catalyst pellets Type de document : texte imprimé Auteurs : André L. Alberton, Auteur ; Marcio Schwaab, Auteur ; Roberto Carlos Bittencourt, Auteur Année de publication : 2010 Article en page(s) : pp. 10277–10283 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Hybrid--Modeling--Methane--Reformers--Optimal--Geometries--Perforated--Catalyst Pellets Résumé : This paper studies the optimization of catalyst pellet geometries for the simultaneous maximization of the mechanical strength and catalyst activity of perforated catalyst pellets used for the reforming of methane. This multiobjective problem can be analyzed with the help of Pareto fronts. A previous work (Part 1: Alberton; et al. Ind. Eng. Chem. Res., in press) demonstrated that the effectiveness factor of catalysts with complex geometry used for the reforming of methane can be expressed as a linear function of the specific area of the pellet; consequently, catalyst activity can be expressed in terms of the geometric parameters of the pellet. It can also be assumed that the mechanical strength of perforated catalyst pellets is related to the minimum wall thickness of the solid piece. Therefore, two optimization problems can be proposed: (i) the simultaneous maximization of the specific area and of the minimum wall thickness of the pellet and (ii) the simultaneous maximization of the overall catalyst activity in the catalyst bed and of the minimum wall thickness of the pellet. These objective functions are evaluated here for several catalyst geometries and analyzed with a Pareto filter. The Pareto fronts obtained for the two analyzed cases are essentially the same, indicating that the maximization of the specific area constitutes a useful criterion for design of perforated catalysts in diffusion-controlled systems. Optimized catalyst geometries are presented for different catalyst designs and can be used as references for future manufacture of catalyst pellets. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9001662 [article] Hybrid modeling of methane reformers. 3 : optimal geometries of perforated catalyst pellets [texte imprimé] / André L. Alberton, Auteur ; Marcio Schwaab, Auteur ; Roberto Carlos Bittencourt, Auteur . - 2010 . - pp. 10277–10283.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 23 (Décembre 2009) . - pp. 10277–10283
Mots-clés : Hybrid--Modeling--Methane--Reformers--Optimal--Geometries--Perforated--Catalyst Pellets Résumé : This paper studies the optimization of catalyst pellet geometries for the simultaneous maximization of the mechanical strength and catalyst activity of perforated catalyst pellets used for the reforming of methane. This multiobjective problem can be analyzed with the help of Pareto fronts. A previous work (Part 1: Alberton; et al. Ind. Eng. Chem. Res., in press) demonstrated that the effectiveness factor of catalysts with complex geometry used for the reforming of methane can be expressed as a linear function of the specific area of the pellet; consequently, catalyst activity can be expressed in terms of the geometric parameters of the pellet. It can also be assumed that the mechanical strength of perforated catalyst pellets is related to the minimum wall thickness of the solid piece. Therefore, two optimization problems can be proposed: (i) the simultaneous maximization of the specific area and of the minimum wall thickness of the pellet and (ii) the simultaneous maximization of the overall catalyst activity in the catalyst bed and of the minimum wall thickness of the pellet. These objective functions are evaluated here for several catalyst geometries and analyzed with a Pareto filter. The Pareto fronts obtained for the two analyzed cases are essentially the same, indicating that the maximization of the specific area constitutes a useful criterion for design of perforated catalysts in diffusion-controlled systems. Optimized catalyst geometries are presented for different catalyst designs and can be used as references for future manufacture of catalyst pellets. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9001662