Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur María E. Taboada
Documents disponibles écrits par cet auteur
Affiner la rechercheCrystallization of hydrated ferric arsenate. process design using METSIM / Pía C. Hernández in Industrial & engineering chemistry research, Vol. 48 N° 23 (Décembre 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 23 (Décembre 2009) . - pp. 10522–10531
Titre : Crystallization of hydrated ferric arsenate. process design using METSIM Type de document : texte imprimé Auteurs : Pía C. Hernández, Auteur ; María E. Taboada, Auteur ; Teófilo A. Graber, Auteur Année de publication : 2010 Article en page(s) : pp. 10522–10531 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Crystallization--Hydrated--Ferric--Arsenate--Process Design--Using METSIM Résumé : An industrial process for extracting arsenic from solutions through scorodite crystallization at 70 °C was designed and simulated using METSIM software. Using equilibrium information from the phase diagram of the system As(V)/Fe(III)/H2O at 50 and 70 °C, experimental tests were carried out of crystallization of scorodite at 50, 70, and 95 °C, as well as crystallization at 170 °C in an autoclave. This information provides the preliminary operational conditions for the process. The tests show that temperature influences the quality of crystals and the velocity of scorodite crystallization (residence time between 3 h and 3 days). The simulated process allows for the analysis of different evaporation ratios (42.5, 71.97, and 86.7%), determining the material and energy balances and the quality of the products and residues, thus providing important information for potential industrial applications. The energy requirements for each evaporation ratio are 21 568, 33 747, and 39 836 Mcal/h, and the sums of the total flows are 11 588.60, 8876.28, and 7520.11 tons/day, respectively. This last variable is related to the size of the equipment used in the process. Molar Fe/As ratios of 1, 0.9, and 0.8 result in yields of 93, 88, and 78%. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900639e [article] Crystallization of hydrated ferric arsenate. process design using METSIM [texte imprimé] / Pía C. Hernández, Auteur ; María E. Taboada, Auteur ; Teófilo A. Graber, Auteur . - 2010 . - pp. 10522–10531.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 23 (Décembre 2009) . - pp. 10522–10531
Mots-clés : Crystallization--Hydrated--Ferric--Arsenate--Process Design--Using METSIM Résumé : An industrial process for extracting arsenic from solutions through scorodite crystallization at 70 °C was designed and simulated using METSIM software. Using equilibrium information from the phase diagram of the system As(V)/Fe(III)/H2O at 50 and 70 °C, experimental tests were carried out of crystallization of scorodite at 50, 70, and 95 °C, as well as crystallization at 170 °C in an autoclave. This information provides the preliminary operational conditions for the process. The tests show that temperature influences the quality of crystals and the velocity of scorodite crystallization (residence time between 3 h and 3 days). The simulated process allows for the analysis of different evaporation ratios (42.5, 71.97, and 86.7%), determining the material and energy balances and the quality of the products and residues, thus providing important information for potential industrial applications. The energy requirements for each evaporation ratio are 21 568, 33 747, and 39 836 Mcal/h, and the sums of the total flows are 11 588.60, 8876.28, and 7520.11 tons/day, respectively. This last variable is related to the size of the equipment used in the process. Molar Fe/As ratios of 1, 0.9, and 0.8 result in yields of 93, 88, and 78%. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900639e