Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Bernard PHILIPPE
Documents disponibles écrits par cet auteur
Affiner la rechercheCalcul des valeurs propres / Bernard PHILIPPE in Techniques de l'ingénieur AFM, Vol. AFM4 (Trimestriel)
[article]
in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-22 p.
Titre : Calcul des valeurs propres Type de document : texte imprimé Auteurs : Bernard PHILIPPE, Auteur ; Yousef Saad, Auteur Année de publication : 2010 Article en page(s) : 1-22 p. Note générale : Mathématiques pour l'ingénieur Langues : Français (fre) Mots-clés : Calcul--Valeurs propresAnalyse numériquevibrations Résumé : Calculer les valeurs propres et les vecteurs propres de matrices est un des problèmes les plus importants en analyse numérique linéaire. Les techniques requérant la connaissance du spectre de matrices sont utilisées dans des domaines aussi variés que la mécanique quantique, l'analyse des structures, la théorie des graphes, les modèles de l'économie et le classement des pages de la Toile informatique par les moteurs de recherche.
Par exemple, en mécanique des structures, les problèmes de « résonances » ou de « vibrations » de structures mécaniques, décrits par l'analyse spectrale, se ramènent à des calculs de valeurs et de vecteurs propres.
Les problèmes non symétriques de valeurs propres apparaissent dans l'analyse de la stabilité de systèmes dynamiques. Dans un tout autre domaine, la chimie quantique donne lieu à des problèmes symétriques aux valeurs propres qui peuvent être gigantesques, tant par leur taille que par le nombre de valeurs et de vecteurs propres à extraire. On peut également mentionner que la décomposition aux valeurs singulières, qui est une sorte de généralisation de la décomposition spectrale classique, est primordiale en statistique et dans les problèmes de la « nouvelle économie » (reconnaissance de formes, fouille de données, traitement du signal, exploitation de données, etc.).
Les problèmes de valeurs propres sont très riches, tant par leur variété que par le type de matrices que l'on doit traiter et par les méthodes et algorithmes de calcul à utiliser : les matrices peuvent être symétriques ou non symétriques, creuses ou pleines, et les problèmes peuvent être classiques ou généralisés ou même quadratiques. Il existe des applications qui requièrent le calcul d'un très petit nombre de valeurs propres, d'autres au contraire un grand nombre de valeurs propres ou même tout le spectre.Note de contenu : Bibliogr. Doc. AF1224 REFERENCE : AF 1224 ISSN : 1776-0860 Date : Octobre 2010 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...] [article] Calcul des valeurs propres [texte imprimé] / Bernard PHILIPPE, Auteur ; Yousef Saad, Auteur . - 2010 . - 1-22 p.
Mathématiques pour l'ingénieur
Langues : Français (fre)
in Techniques de l'ingénieur AFM > Vol. AFM4 (Trimestriel) . - 1-22 p.
Mots-clés : Calcul--Valeurs propresAnalyse numériquevibrations Résumé : Calculer les valeurs propres et les vecteurs propres de matrices est un des problèmes les plus importants en analyse numérique linéaire. Les techniques requérant la connaissance du spectre de matrices sont utilisées dans des domaines aussi variés que la mécanique quantique, l'analyse des structures, la théorie des graphes, les modèles de l'économie et le classement des pages de la Toile informatique par les moteurs de recherche.
Par exemple, en mécanique des structures, les problèmes de « résonances » ou de « vibrations » de structures mécaniques, décrits par l'analyse spectrale, se ramènent à des calculs de valeurs et de vecteurs propres.
Les problèmes non symétriques de valeurs propres apparaissent dans l'analyse de la stabilité de systèmes dynamiques. Dans un tout autre domaine, la chimie quantique donne lieu à des problèmes symétriques aux valeurs propres qui peuvent être gigantesques, tant par leur taille que par le nombre de valeurs et de vecteurs propres à extraire. On peut également mentionner que la décomposition aux valeurs singulières, qui est une sorte de généralisation de la décomposition spectrale classique, est primordiale en statistique et dans les problèmes de la « nouvelle économie » (reconnaissance de formes, fouille de données, traitement du signal, exploitation de données, etc.).
Les problèmes de valeurs propres sont très riches, tant par leur variété que par le type de matrices que l'on doit traiter et par les méthodes et algorithmes de calcul à utiliser : les matrices peuvent être symétriques ou non symétriques, creuses ou pleines, et les problèmes peuvent être classiques ou généralisés ou même quadratiques. Il existe des applications qui requièrent le calcul d'un très petit nombre de valeurs propres, d'autres au contraire un grand nombre de valeurs propres ou même tout le spectre.Note de contenu : Bibliogr. Doc. AF1224 REFERENCE : AF 1224 ISSN : 1776-0860 Date : Octobre 2010 En ligne : http://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/ [...]