Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Richard W. I. Brachman
Documents disponibles écrits par cet auteur
Affiner la rechercheLaboratory testing to examine deformations and moments in fiber-reinforced cement pipe / Scott M. Munro in Journal of geotechnical and geoenvironmental engineering, Vol. 135 N° 11 (Novembre 2009)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 11 (Novembre 2009) . - pp. 1722–1731
Titre : Laboratory testing to examine deformations and moments in fiber-reinforced cement pipe Type de document : texte imprimé Auteurs : Scott M. Munro, Auteur ; Ian D. Moore, Auteur ; Richard W. I. Brachman, Auteur Année de publication : 2009 Article en page(s) : pp. 1722–1731 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : CulvertsUnderground structuresInfrastructureFiber reinforced materialsCementSoil-pipe interactionsBending Résumé : Two 381 mm (15 in. nominal) diameter fiber reinforced cement pipes have been tested under embankment loading conditions to study pipe response in both low stiffness, fine grained backfill, and a high stiffness graded granular backfill. Pipe deformations and strains were measured and interpreted to provide insight into the effect of soil backfill on the deformations and moments that develop. Not surprisingly, the use of silty clay backfill resulted in greater pipe deflections while the stiffer granular backfill lead to greater load transfer to the surrounding ground. Calculations using elastic soil-pipe interaction theory were effective in estimating the observed changes in pipe diameter at typical service loads (overburden pressures of 100 kPa, i.e., 14.4 psi in the lower stiffness backfill and 200 kPa, i.e., 28.8 psi in the high stiffness backfill). Measured strain distributions show that the fiber reinforced pipe exhibited ovaling response similar to that seen for flexible and semiflexible pipes. As expected, tensile strains were observed on the outer surface at the springlines and the inner surface at the crown. Strains observed at the haunch were negligible, indicating that the bending moments within the pipe have conventional “hourglass” distribution, with negligible moments at shoulders and haunches. Differences in strain measured at the inner and outer surfaces were used with the elastic pipe modulus to calculate the experimental bending moments. Comparisons of those experimental bending moments with the bending moment calculated for a rigid pipe indicate that these FRC pipe structures are semirigid so that moments are reduced as a result of support provided by the surrounding soil. A design expression for moment arching factor (MAF or moment divided by the rigid pipe moments) developed in an earlier paper was found to provide reasonable estimates for the experimental moment values. Moment estimated using the design soil moduli of McGrath and MAF provide moment values that are reasonable and conservative relative to those that were observed. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000142 [article] Laboratory testing to examine deformations and moments in fiber-reinforced cement pipe [texte imprimé] / Scott M. Munro, Auteur ; Ian D. Moore, Auteur ; Richard W. I. Brachman, Auteur . - 2009 . - pp. 1722–1731.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 11 (Novembre 2009) . - pp. 1722–1731
Mots-clés : CulvertsUnderground structuresInfrastructureFiber reinforced materialsCementSoil-pipe interactionsBending Résumé : Two 381 mm (15 in. nominal) diameter fiber reinforced cement pipes have been tested under embankment loading conditions to study pipe response in both low stiffness, fine grained backfill, and a high stiffness graded granular backfill. Pipe deformations and strains were measured and interpreted to provide insight into the effect of soil backfill on the deformations and moments that develop. Not surprisingly, the use of silty clay backfill resulted in greater pipe deflections while the stiffer granular backfill lead to greater load transfer to the surrounding ground. Calculations using elastic soil-pipe interaction theory were effective in estimating the observed changes in pipe diameter at typical service loads (overburden pressures of 100 kPa, i.e., 14.4 psi in the lower stiffness backfill and 200 kPa, i.e., 28.8 psi in the high stiffness backfill). Measured strain distributions show that the fiber reinforced pipe exhibited ovaling response similar to that seen for flexible and semiflexible pipes. As expected, tensile strains were observed on the outer surface at the springlines and the inner surface at the crown. Strains observed at the haunch were negligible, indicating that the bending moments within the pipe have conventional “hourglass” distribution, with negligible moments at shoulders and haunches. Differences in strain measured at the inner and outer surfaces were used with the elastic pipe modulus to calculate the experimental bending moments. Comparisons of those experimental bending moments with the bending moment calculated for a rigid pipe indicate that these FRC pipe structures are semirigid so that moments are reduced as a result of support provided by the surrounding soil. A design expression for moment arching factor (MAF or moment divided by the rigid pipe moments) developed in an earlier paper was found to provide reasonable estimates for the experimental moment values. Moment estimated using the design soil moduli of McGrath and MAF provide moment values that are reasonable and conservative relative to those that were observed. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000142