Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur P. Joseph
Documents disponibles écrits par cet auteur
Affiner la rechercheConstitutive model of soil based on a dynamical systems aproach / P. Joseph in Journal of geotechnical and geoenvironmental engineering, Vol. 135 N° 8 (Août 2009)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 8 (Août 2009) . - pp. 1155–1158
Titre : Constitutive model of soil based on a dynamical systems aproach Type de document : texte imprimé Auteurs : P. Joseph, Auteur Année de publication : 2009 Article en page(s) : pp. 1155–1158 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : Constitutive models Shear stress Steady states Soil properties Résumé : A soil when sheared ultimately reaches a steady-state condition at which it deforms at a constant shear stress, effective normal stress, and void ratio. Various systems in nature dynamically evolve similarly from some initial condition, to a final steady-state condition. Such systems have been studied using dynamical systems theory. This technical note uses this theory to model monotonic shear of soil as a dynamical system. The principle proposed is simple—the rates of change of the shear stress, effective normal stress, and void ratio are proportional to the applied values of the shear and effective normal stress with the proportionality values decaying with strain until ultimately these proportionality values become zero at the steady-state condition. It provides a well-formed qualitative principle that fits closely the stress-strain-void ratio curves of undrained shear tests on uncemented, resedimented clays at various over consolidated ratios (OCRs), and drained shear tests on sands and silts at various relative densities, for various stress paths including compression, extension from standard triaxial, and true-triaxial tests. For the undrained shear of resedimented clay, these proportionalities and their decay rates vary smoothly with OCR. For drained shear of sand and silt, the model parameters show orderly variation with relative density. Its value lies in that a well-formed qualitative principle derived from the steady-state condition provides an alternate approach to current complex elastoplastic models based on critical state theory. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000001 [article] Constitutive model of soil based on a dynamical systems aproach [texte imprimé] / P. Joseph, Auteur . - 2009 . - pp. 1155–1158.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 135 N° 8 (Août 2009) . - pp. 1155–1158
Mots-clés : Constitutive models Shear stress Steady states Soil properties Résumé : A soil when sheared ultimately reaches a steady-state condition at which it deforms at a constant shear stress, effective normal stress, and void ratio. Various systems in nature dynamically evolve similarly from some initial condition, to a final steady-state condition. Such systems have been studied using dynamical systems theory. This technical note uses this theory to model monotonic shear of soil as a dynamical system. The principle proposed is simple—the rates of change of the shear stress, effective normal stress, and void ratio are proportional to the applied values of the shear and effective normal stress with the proportionality values decaying with strain until ultimately these proportionality values become zero at the steady-state condition. It provides a well-formed qualitative principle that fits closely the stress-strain-void ratio curves of undrained shear tests on uncemented, resedimented clays at various over consolidated ratios (OCRs), and drained shear tests on sands and silts at various relative densities, for various stress paths including compression, extension from standard triaxial, and true-triaxial tests. For the undrained shear of resedimented clay, these proportionalities and their decay rates vary smoothly with OCR. For drained shear of sand and silt, the model parameters show orderly variation with relative density. Its value lies in that a well-formed qualitative principle derived from the steady-state condition provides an alternate approach to current complex elastoplastic models based on critical state theory. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000001