Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. D. Bedrosian
Documents disponibles écrits par cet auteur
Affiner la recherche
Titre : Application of graph theory to stability of nonlinear systems Type de document : texte imprimé Auteurs : Madjid Kidouche, Auteur ; S. D. Bedrosian, Directeur de thèse Editeur : Université de Pennsylvania Année de publication : 1986 Importance : 36 f. Présentation : ill. Format : 27 cm. Note générale : Mémoire de Magister : Électrotechnique : Philadelphia, Université de Pennsylvania : 1986
Bibliogr. f. 37 - 41Langues : Anglais (eng) Mots-clés : Linear graph ; Digraph ; Lyapunov stability ; Composite system ; Direct method of lyapunov Index. décimale : M006586 Résumé : For a given composite system, stability is usually the most important performance attribute ti be determined.
If the composite system is linear many stability criteria are available.
Among them are the Nyquist criterion, Routh's stability, etc...
If the system is nonlinear, then such stability criteria do not apply, but the direct method of Lyapunov (DML) is the most general method for the determination of stability of nonlinear composite systems.
Despite its elegance and generality, the usefulness of (DML) is severely limited when applied to systems of high dimension.
For this reason it may be advantageous to view the composite system as being composed of several subsystems, which when interconnected in an appropriate fashion, yield the original composite or interconnected system.
We use graph theoretic decomposition technique based on identifying the strongly connected components (SCC) of the digraph model.
The basic concept of solving a composite system through an analysis of its subsystem (SCC) and their interconnections is to simplify determination of its stability.
This stems from the fact easier to find Lyapunov function for the lower order subsystem than the higher order composite system.Application of graph theory to stability of nonlinear systems [texte imprimé] / Madjid Kidouche, Auteur ; S. D. Bedrosian, Directeur de thèse . - [S.l.] : Université de Pennsylvania, 1986 . - 36 f. : ill. ; 27 cm.
Mémoire de Magister : Électrotechnique : Philadelphia, Université de Pennsylvania : 1986
Bibliogr. f. 37 - 41
Langues : Anglais (eng)
Mots-clés : Linear graph ; Digraph ; Lyapunov stability ; Composite system ; Direct method of lyapunov Index. décimale : M006586 Résumé : For a given composite system, stability is usually the most important performance attribute ti be determined.
If the composite system is linear many stability criteria are available.
Among them are the Nyquist criterion, Routh's stability, etc...
If the system is nonlinear, then such stability criteria do not apply, but the direct method of Lyapunov (DML) is the most general method for the determination of stability of nonlinear composite systems.
Despite its elegance and generality, the usefulness of (DML) is severely limited when applied to systems of high dimension.
For this reason it may be advantageous to view the composite system as being composed of several subsystems, which when interconnected in an appropriate fashion, yield the original composite or interconnected system.
We use graph theoretic decomposition technique based on identifying the strongly connected components (SCC) of the digraph model.
The basic concept of solving a composite system through an analysis of its subsystem (SCC) and their interconnections is to simplify determination of its stability.
This stems from the fact easier to find Lyapunov function for the lower order subsystem than the higher order composite system.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire M006586 M006586 Papier Bibliothèque centrale Mémoire de Magister Disponible Documents numériques
KIDOUCHE.Madjid.pdfURL