Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jilin Qi
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of the deformation of embankments on the Qinghai-Tibet railway / Wei Ma in Journal of geotechnical and geoenvironmental engineering, Vol. 134 n°11 (Novembre 2008)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 134 n°11 (Novembre 2008) . - pp. 1645–1654
Titre : Analysis of the deformation of embankments on the Qinghai-Tibet railway Type de document : texte imprimé Auteurs : Wei Ma, Auteur ; Jilin Qi, Auteur Année de publication : 2009 Article en page(s) : pp. 1645–1654 Note générale : Geotechnical and geoenvironmental engineering Langues : Anglais (eng) Mots-clés : Rail transportation Permafrost Embankments Deformation Monitoring China Résumé : Temperature changes and deformations were monitored on various embankment types on the Qinghai-Tibet Railway. Some of these embankments utilized permafrost protection techniques such as duct ventilation, crushed-rock embankments, crushed-rock protected slopes, or thermal-insulation treatments. Some embankments were built conventionally without considering permafrost protection. It was found that the majority of the deformations on both the permafrost-protected and the conventionally built embankments were due to deformation of warm frozen layers closely related to the temperature changes in the underlying permafrost. However, it was found that building embankments with permafrost protection reduced the magnitude of the settlements. After 2–3years , deformation of all the embankments with permafrost protection countermeasures became smaller and smaller, whereas deformation was still increasing in the conventional embankments, where the settlement in the underlying permafrost could reach a considerable level, and could be a potential trigger for embankment failure. This should be taken into consideration in the railway engineering project on the Qinghai-Tibet Plateau. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-0241%282008%29134%3A11%281 [...] [article] Analysis of the deformation of embankments on the Qinghai-Tibet railway [texte imprimé] / Wei Ma, Auteur ; Jilin Qi, Auteur . - 2009 . - pp. 1645–1654.
Geotechnical and geoenvironmental engineering
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 134 n°11 (Novembre 2008) . - pp. 1645–1654
Mots-clés : Rail transportation Permafrost Embankments Deformation Monitoring China Résumé : Temperature changes and deformations were monitored on various embankment types on the Qinghai-Tibet Railway. Some of these embankments utilized permafrost protection techniques such as duct ventilation, crushed-rock embankments, crushed-rock protected slopes, or thermal-insulation treatments. Some embankments were built conventionally without considering permafrost protection. It was found that the majority of the deformations on both the permafrost-protected and the conventionally built embankments were due to deformation of warm frozen layers closely related to the temperature changes in the underlying permafrost. However, it was found that building embankments with permafrost protection reduced the magnitude of the settlements. After 2–3years , deformation of all the embankments with permafrost protection countermeasures became smaller and smaller, whereas deformation was still increasing in the conventional embankments, where the settlement in the underlying permafrost could reach a considerable level, and could be a potential trigger for embankment failure. This should be taken into consideration in the railway engineering project on the Qinghai-Tibet Plateau. En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-0241%282008%29134%3A11%281 [...]