[article]
Titre : |
Simplified plane-strain modeling of stone-column reinforced ground |
Type de document : |
texte imprimé |
Auteurs : |
S. A. Tan, Auteur ; S. Tjahyono, Auteur ; K. K. Oo, Auteur |
Année de publication : |
2008 |
Article en page(s) : |
pp. 185–194 |
Note générale : |
Geotechnical and geoenvironmental engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
Plane strain Columns Stones Soil consolidation Numerical models Constitutive Plastic deformation Embankments |
Résumé : |
The acceleration of consolidation rate by stone columns was mostly analyzed within the framework of a basic unit cell (i.e., a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modeling of multicolumn field applications. This paper proposes two simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multicolumn reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modeling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elastoplastic material modeling, the second method is preferable as the first one gives erroneously lower long-term settlements. |
En ligne : |
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-0241%282008%29134%3A2%2818 [...] |
in Journal of geotechnical and geoenvironmental engineering > Vol. 134 N°2 (Fevrier 2008) . - pp. 185–194
[article] Simplified plane-strain modeling of stone-column reinforced ground [texte imprimé] / S. A. Tan, Auteur ; S. Tjahyono, Auteur ; K. K. Oo, Auteur . - 2008 . - pp. 185–194. Geotechnical and geoenvironmental engineering Langues : Anglais ( eng) in Journal of geotechnical and geoenvironmental engineering > Vol. 134 N°2 (Fevrier 2008) . - pp. 185–194
Mots-clés : |
Plane strain Columns Stones Soil consolidation Numerical models Constitutive Plastic deformation Embankments |
Résumé : |
The acceleration of consolidation rate by stone columns was mostly analyzed within the framework of a basic unit cell (i.e., a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modeling of multicolumn field applications. This paper proposes two simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multicolumn reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modeling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elastoplastic material modeling, the second method is preferable as the first one gives erroneously lower long-term settlements. |
En ligne : |
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-0241%282008%29134%3A2%2818 [...] |
|