Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. Cohen
Documents disponibles écrits par cet auteur
Affiner la rechercheA model for contact and static friction of nominally flat rough surfaces under full stick contact condition / D. Cohen in Transactions of the ASME . Journal of tribology, Vol. 130 n°3 (Juillet 2008)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 130 n°3 (Juillet 2008) . - 9 p.
Titre : A model for contact and static friction of nominally flat rough surfaces under full stick contact condition Type de document : texte imprimé Auteurs : D. Cohen, Auteur ; Y. Kligerman, Auteur ; I. Etsion, Auteur Année de publication : 2008 Article en page(s) : 9 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Force Plasticity Friction Surface roughness Stress Stiction Junctions Equations Résumé : A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results. En ligne : http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1468059 [article] A model for contact and static friction of nominally flat rough surfaces under full stick contact condition [texte imprimé] / D. Cohen, Auteur ; Y. Kligerman, Auteur ; I. Etsion, Auteur . - 2008 . - 9 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 130 n°3 (Juillet 2008) . - 9 p.
Mots-clés : Force Plasticity Friction Surface roughness Stress Stiction Junctions Equations Résumé : A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results. En ligne : http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1468059