Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Xingmao Jiang
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical simulation of ethanol−water−NaCl droplet evaporation / Xingmao Jiang in Industrial & engineering chemistry research, Vol. 49 N° 12 (Juin 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 12 (Juin 2010) . - pp. 5631–5643
Titre : Numerical simulation of ethanol−water−NaCl droplet evaporation Type de document : texte imprimé Auteurs : Xingmao Jiang, Auteur ; Timothy L. Ward, Auteur ; Frank van Swol, Auteur Année de publication : 2010 Article en page(s) : pp. 5631–5643 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Droplet evaporation Water Ethanol droplets Résumé : A quantitative description of droplet evaporation is important to aerosol research for nanofabrication, spray drying, fuel combustion, pollution control, and respiratory medical treatments. Evaporation is a moving-boundary problem with coupled mass and heat transport. An explicit finite-difference methodology and computer code has been developed for simulation of an evolving droplet, property data for size, and profiles for various compositions and temperature. The code accurately predicts the evaporation of pure water and pure ethanol droplets. To understand aerosol-assisted evaporation-induced self-assembly and the formation mechanism for single-crystal NaCl core/hexagonally ordered mesoporous silica shell particles, evaporation of ethanol−water−NaCl droplets in N2 has been investigated by numerical simulation. The extended universal quasichemical (UNIQUAC) model with a Debye−Hückel term is used to describe the vapor−liquid phase equilibrium. For 1−2-μm-radius droplets with a number density of 107∼108/cm3, it takes only tens of milliseconds to reach phase equilibrium after adiabatic or isothermal evaporation at 25 °C in the drying zone. The droplets entering a heating zone can be simply treated like a single-stage flash evaporation at 25 °C. For a 1-μm-radius droplet, after 0.18 ms of evaporation at 100 °C in N2, the NaCl saturation ratio reaches levels as high as 1.3, first at the droplet center, where the initial NaCl nucleation and crystallization happens as a result of relatively quick evaporation and a steep gradient in the concentration of ethanol, an antisolvent for NaCl. NaCl crystallization “consumes” NaCl molecules near the droplet center and quenches the formation of new stable NaCl nuclei, favoring the formation of only one single-crystal NaCl core per droplet. The code provides guidance for the custom engineering of aerosol nanoparticle architectures. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie902042z [article] Numerical simulation of ethanol−water−NaCl droplet evaporation [texte imprimé] / Xingmao Jiang, Auteur ; Timothy L. Ward, Auteur ; Frank van Swol, Auteur . - 2010 . - pp. 5631–5643.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 12 (Juin 2010) . - pp. 5631–5643
Mots-clés : Droplet evaporation Water Ethanol droplets Résumé : A quantitative description of droplet evaporation is important to aerosol research for nanofabrication, spray drying, fuel combustion, pollution control, and respiratory medical treatments. Evaporation is a moving-boundary problem with coupled mass and heat transport. An explicit finite-difference methodology and computer code has been developed for simulation of an evolving droplet, property data for size, and profiles for various compositions and temperature. The code accurately predicts the evaporation of pure water and pure ethanol droplets. To understand aerosol-assisted evaporation-induced self-assembly and the formation mechanism for single-crystal NaCl core/hexagonally ordered mesoporous silica shell particles, evaporation of ethanol−water−NaCl droplets in N2 has been investigated by numerical simulation. The extended universal quasichemical (UNIQUAC) model with a Debye−Hückel term is used to describe the vapor−liquid phase equilibrium. For 1−2-μm-radius droplets with a number density of 107∼108/cm3, it takes only tens of milliseconds to reach phase equilibrium after adiabatic or isothermal evaporation at 25 °C in the drying zone. The droplets entering a heating zone can be simply treated like a single-stage flash evaporation at 25 °C. For a 1-μm-radius droplet, after 0.18 ms of evaporation at 100 °C in N2, the NaCl saturation ratio reaches levels as high as 1.3, first at the droplet center, where the initial NaCl nucleation and crystallization happens as a result of relatively quick evaporation and a steep gradient in the concentration of ethanol, an antisolvent for NaCl. NaCl crystallization “consumes” NaCl molecules near the droplet center and quenches the formation of new stable NaCl nuclei, favoring the formation of only one single-crystal NaCl core per droplet. The code provides guidance for the custom engineering of aerosol nanoparticle architectures. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie902042z