Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. R. Nabavi
Documents disponibles écrits par cet auteur
Affiner la rechercheMultiobjective optimization of an industrial LPG thermal cracker using a first principles model / S. R. Nabavi in Industrial & engineering chemistry research, Vol. 48 N° 21 (Novembre 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 21 (Novembre 2009) . - pp. 9523–9533
Titre : Multiobjective optimization of an industrial LPG thermal cracker using a first principles model Type de document : texte imprimé Auteurs : S. R. Nabavi, Auteur ; G.P. Rangaiah, Auteur ; A. Niaei, Auteur Année de publication : 2010 Article en page(s) : pp. 9523–9533 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Industrial liquefied petroleum gas Butane thermal cracker Propane thermal cracker Genetic algorithm Résumé : Thermal cracking of hydrocarbons in the presence of steam is the most important process for the production of ethylene and propylene, which are the raw materials for many petrochemicals. In this work, multiobjective optimization (MOO) of an industrial LPG (liquefied petroleum gas containing mainly propane and butane) thermal cracker is studied using the elitist nondominated sorting genetic algorithm adapted with the jumping gene operator, NSGA-II-aJG. A first principles model based on free radical mechanism for LPG thermal cracking is employed for optimization. Several bi- and triobjective optimization problems are solved; these problems involved maximization of annual ethylene/propylene production, selectivity and run length, and minimization of severity and total heat duty per year. Feed flow rate, steam ratio, inlet temperature, coil outlet temperature, and pressure are the decision variables. MOO of the LPG thermal cracker provides a range of optimal operating conditions and objective values, with the triobjective optimization giving more optimal solutions compared to those from the biobjective optimization for the objectives considered. With this detailed knowledge, a suitable operating point can be selected based on specific requirements in the particular plant. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801409m [article] Multiobjective optimization of an industrial LPG thermal cracker using a first principles model [texte imprimé] / S. R. Nabavi, Auteur ; G.P. Rangaiah, Auteur ; A. Niaei, Auteur . - 2010 . - pp. 9523–9533.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 21 (Novembre 2009) . - pp. 9523–9533
Mots-clés : Industrial liquefied petroleum gas Butane thermal cracker Propane thermal cracker Genetic algorithm Résumé : Thermal cracking of hydrocarbons in the presence of steam is the most important process for the production of ethylene and propylene, which are the raw materials for many petrochemicals. In this work, multiobjective optimization (MOO) of an industrial LPG (liquefied petroleum gas containing mainly propane and butane) thermal cracker is studied using the elitist nondominated sorting genetic algorithm adapted with the jumping gene operator, NSGA-II-aJG. A first principles model based on free radical mechanism for LPG thermal cracking is employed for optimization. Several bi- and triobjective optimization problems are solved; these problems involved maximization of annual ethylene/propylene production, selectivity and run length, and minimization of severity and total heat duty per year. Feed flow rate, steam ratio, inlet temperature, coil outlet temperature, and pressure are the decision variables. MOO of the LPG thermal cracker provides a range of optimal operating conditions and objective values, with the triobjective optimization giving more optimal solutions compared to those from the biobjective optimization for the objectives considered. With this detailed knowledge, a suitable operating point can be selected based on specific requirements in the particular plant. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801409m