Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Juan A. Lazzús
Documents disponibles écrits par cet auteur
Affiner la rechercheHybrid method to predict melting points of organic compounds using group contribution + neural network + particle swarm algorithm / Juan A. Lazzús in Industrial & engineering chemistry research, Vol. 48 N° 18 (Septembre 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 18 (Septembre 2009) . - pp. 8760–8766
Titre : Hybrid method to predict melting points of organic compounds using group contribution + neural network + particle swarm algorithm Type de document : texte imprimé Auteurs : Juan A. Lazzús, Auteur Année de publication : 2010 Article en page(s) : pp. 8760–8766 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Organic compounds Group contribution method Artificial neural network Résumé : The melting points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) replacing standart backpropagation with particle swarm optimization (PSO). A total of 439 compounds have been used to train the network developed using MatLab. Then, the melting points of 100 other compounds have been predicted and results compared to experimental data and other models availables in the literature. The study shows that the proposed GCM + ANN + PSO model represents an excellent alternative for the estimation of melting points of organic compounds (average absolute relative deviation (AARD) = 7%) from the knowledge of the molecular structure. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900431f [article] Hybrid method to predict melting points of organic compounds using group contribution + neural network + particle swarm algorithm [texte imprimé] / Juan A. Lazzús, Auteur . - 2010 . - pp. 8760–8766.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 18 (Septembre 2009) . - pp. 8760–8766
Mots-clés : Organic compounds Group contribution method Artificial neural network Résumé : The melting points of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) replacing standart backpropagation with particle swarm optimization (PSO). A total of 439 compounds have been used to train the network developed using MatLab. Then, the melting points of 100 other compounds have been predicted and results compared to experimental data and other models availables in the literature. The study shows that the proposed GCM + ANN + PSO model represents an excellent alternative for the estimation of melting points of organic compounds (average absolute relative deviation (AARD) = 7%) from the knowledge of the molecular structure. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900431f