Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Deepak Goel
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical simulations of bubble formation and rise in microchannels / Deepak Goel in Industrial & engineering chemistry research, Vol. 48 N° 17 (Septembre 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 17 (Septembre 2009) . - pp. 8109–8120
Titre : Numerical simulations of bubble formation and rise in microchannels Type de document : texte imprimé Auteurs : Deepak Goel, Auteur ; Vivek V. Buwa, Auteur Année de publication : 2009 Article en page(s) : pp. 8109–8120 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Microchannels Gas−liquid flow Bubbles Résumé : Gas−liquid flow in microchannels is of fundamental importance to many engineering applications involving microreactors, monolith reactors, microheat exchangers, and several other microfluidic devices. Slug flow, characterized by motion of long bubbles, also referred to as Taylor bubbles, is the most important of the different two-phase flow regimes observed in microchannels. In this work, the formation of bubbles and their rise in circular capillaries in the Taylor flow regime is investigated by using the volume-of-fluid method. The dynamics of formation and rise of Taylor bubbles in glass capillaries of 1, 0.5, 0.75, and 0.3 mm diameter for air−water and air−octane systems was simulated. The effects of superficial gas and liquid velocities, channel geometry (nozzle wall thickness, nozzle diameter, capillary diameter), wall adhesion (contact angle), and fluid properties (surface tension, viscosity) on the dynamics of bubble formation were investigated. The predicted bubble shapes and bubble formation periods were validated using the experimental data reported by Salman et al. (Salman, W.; Gavriilidis, A.; Angeli, P. Chem. Eng. Sci. 2006, 61, 6653−6666) for a wide range of experimental parameters. Such experimentally validated computational flow models will be useful to simulate the mass transfer and reactions in microcapillaries/channels. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800806f#cor1 [article] Numerical simulations of bubble formation and rise in microchannels [texte imprimé] / Deepak Goel, Auteur ; Vivek V. Buwa, Auteur . - 2009 . - pp. 8109–8120.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 17 (Septembre 2009) . - pp. 8109–8120
Mots-clés : Microchannels Gas−liquid flow Bubbles Résumé : Gas−liquid flow in microchannels is of fundamental importance to many engineering applications involving microreactors, monolith reactors, microheat exchangers, and several other microfluidic devices. Slug flow, characterized by motion of long bubbles, also referred to as Taylor bubbles, is the most important of the different two-phase flow regimes observed in microchannels. In this work, the formation of bubbles and their rise in circular capillaries in the Taylor flow regime is investigated by using the volume-of-fluid method. The dynamics of formation and rise of Taylor bubbles in glass capillaries of 1, 0.5, 0.75, and 0.3 mm diameter for air−water and air−octane systems was simulated. The effects of superficial gas and liquid velocities, channel geometry (nozzle wall thickness, nozzle diameter, capillary diameter), wall adhesion (contact angle), and fluid properties (surface tension, viscosity) on the dynamics of bubble formation were investigated. The predicted bubble shapes and bubble formation periods were validated using the experimental data reported by Salman et al. (Salman, W.; Gavriilidis, A.; Angeli, P. Chem. Eng. Sci. 2006, 61, 6653−6666) for a wide range of experimental parameters. Such experimentally validated computational flow models will be useful to simulate the mass transfer and reactions in microcapillaries/channels. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800806f#cor1