Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Joan F. Brennecke
Documents disponibles écrits par cet auteur
Affiner la rechercheAsymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 1. theory, phase stability analysis, and parameter estimation / Luke D. Simoni in Industrial & engineering chemistry research, Vol. 48 N° 15 (Août 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7246–7256
Titre : Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 1. theory, phase stability analysis, and parameter estimation Type de document : texte imprimé Auteurs : Luke D. Simoni, Auteur ; Joan F. Brennecke, Auteur ; Mark A. Stadtherr, Auteur Année de publication : 2009 Article en page(s) : pp. 7246–7256 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Electrolyte/mixed-solvent systems Liquid−liquid equilibrium Ionic liquid Aqueous solution Résumé : A new approach for modeling liquid−liquid equilibrium in electrolyte/mixed-solvent systems is presented, with particular focus on systems involving a dilute aqueous solution of an ionic liquid (IL). This new approach involves an asymmetric framework in which different phases have different degrees of electrolyte dissociation, and are thus represented by different Gibbs free energy models. As a first case, we consider the situation in which the electrolyte is either completely dissociated or completely paired (molecular), with its state depending on the dielectric constant of the mixed solvent and on the concentration of the salt in the phase in question. The theory underlying this asymmetric framework is developed, and a rigorous approach for phase stability analysis is presented. It is explained how to formulate and solve the parameter estimation problem for determining model parameters from binary data, and this process is demonstrated using examples. An immediate goal is to use this approach to predict liquid−liquid equilibrium for ternary IL/solvent/water systems, using parameters obtained from binary and pure component data only. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900461j [article] Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 1. theory, phase stability analysis, and parameter estimation [texte imprimé] / Luke D. Simoni, Auteur ; Joan F. Brennecke, Auteur ; Mark A. Stadtherr, Auteur . - 2009 . - pp. 7246–7256.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7246–7256
Mots-clés : Electrolyte/mixed-solvent systems Liquid−liquid equilibrium Ionic liquid Aqueous solution Résumé : A new approach for modeling liquid−liquid equilibrium in electrolyte/mixed-solvent systems is presented, with particular focus on systems involving a dilute aqueous solution of an ionic liquid (IL). This new approach involves an asymmetric framework in which different phases have different degrees of electrolyte dissociation, and are thus represented by different Gibbs free energy models. As a first case, we consider the situation in which the electrolyte is either completely dissociated or completely paired (molecular), with its state depending on the dielectric constant of the mixed solvent and on the concentration of the salt in the phase in question. The theory underlying this asymmetric framework is developed, and a rigorous approach for phase stability analysis is presented. It is explained how to formulate and solve the parameter estimation problem for determining model parameters from binary data, and this process is demonstrated using examples. An immediate goal is to use this approach to predict liquid−liquid equilibrium for ternary IL/solvent/water systems, using parameters obtained from binary and pure component data only. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900461j Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 2. prediction of ternary systems / Luke D. Simoni in Industrial & engineering chemistry research, Vol. 48 N° 15 (Août 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7257–7265
Titre : Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 2. prediction of ternary systems Type de document : texte imprimé Auteurs : Luke D. Simoni, Auteur ; Alexandre Chapeaux, Auteur ; Joan F. Brennecke, Auteur Année de publication : 2009 Article en page(s) : pp. 7257–7265 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Asymmetric framework Liquid−liquid equilibrium Electrolyte/mixed-solvent systems Résumé : A new asymmetric framework for modeling liquid−liquid equilibrium (LLE) in electrolyte/mixed-solvent systems is demonstrated, with focus on systems involving a dilute aqueous solution of an ionic liquid (IL). The extent to which this approach is able to predict ternary LLE, using parameters obtained from binary and pure-component data only, is evaluated. For this purpose, ternary IL/solvent/water systems are used as examples. Comparisons of predicted LLE are made to experimental data representing various types of ternary LLE behavior, as well as to predictions obtained from standard symmetric models. Results indicate that an asymmetric NRTL/eNRTL model provides better predictions of ternary LLE for systems containing ILs and water than standard symmetric models. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9004628 [article] Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 2. prediction of ternary systems [texte imprimé] / Luke D. Simoni, Auteur ; Alexandre Chapeaux, Auteur ; Joan F. Brennecke, Auteur . - 2009 . - pp. 7257–7265.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 15 (Août 2009) . - pp. 7257–7265
Mots-clés : Asymmetric framework Liquid−liquid equilibrium Electrolyte/mixed-solvent systems Résumé : A new asymmetric framework for modeling liquid−liquid equilibrium (LLE) in electrolyte/mixed-solvent systems is demonstrated, with focus on systems involving a dilute aqueous solution of an ionic liquid (IL). The extent to which this approach is able to predict ternary LLE, using parameters obtained from binary and pure-component data only, is evaluated. For this purpose, ternary IL/solvent/water systems are used as examples. Comparisons of predicted LLE are made to experimental data representing various types of ternary LLE behavior, as well as to predictions obtained from standard symmetric models. Results indicate that an asymmetric NRTL/eNRTL model provides better predictions of ternary LLE for systems containing ILs and water than standard symmetric models. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie9004628 Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model / Chau-Chyun Chen in Industrial & engineering chemistry research, Vol. 47 N°18 (Septembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N°18 (Septembre 2008) . - p. 7081–7093
Titre : Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model Type de document : texte imprimé Auteurs : Chau-Chyun Chen, Auteur ; Luke D. Simoni, Auteur ; Joan F. Brennecke, Auteur Année de publication : 2008 Article en page(s) : p. 7081–7093 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Ionic liquids NRTL-SAC model Résumé : Room-temperature ionic liquids have shown great potential as media for reactions and separations. Information on how organic compounds interact with these ionic liquids is crucial in assessing their usefulness. Here, the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model is used first to correlate values of infinite-dilution activity coefficients for organic compounds in ionic liquids and then to predict the phase behavior of various mixtures involving these ionic liquids. NRTL-SAC provides a robust, qualitative predictive model based on four molecular descriptors that are designed to capture molecular surface interaction characteristics: hydrophobicity, hydrophilicity, polarity, and solvation strength. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800048d [article] Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model [texte imprimé] / Chau-Chyun Chen, Auteur ; Luke D. Simoni, Auteur ; Joan F. Brennecke, Auteur . - 2008 . - p. 7081–7093.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N°18 (Septembre 2008) . - p. 7081–7093
Mots-clés : Ionic liquids NRTL-SAC model Résumé : Room-temperature ionic liquids have shown great potential as media for reactions and separations. Information on how organic compounds interact with these ionic liquids is crucial in assessing their usefulness. Here, the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model is used first to correlate values of infinite-dilution activity coefficients for organic compounds in ionic liquids and then to predict the phase behavior of various mixtures involving these ionic liquids. NRTL-SAC provides a robust, qualitative predictive model based on four molecular descriptors that are designed to capture molecular surface interaction characteristics: hydrophobicity, hydrophilicity, polarity, and solvation strength. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800048d