[article]
Titre : |
Study on multiphase flow and mixing in semidry flue gas desulfurization with a multifluid alkaline spray generator using particle image velocimetry |
Type de document : |
texte imprimé |
Auteurs : |
Yuegui Zhou, Auteur ; Dongfu Wang, Auteur ; Mingchuan Zhang, Auteur |
Année de publication : |
2009 |
Article en page(s) : |
pp. 5808–5815 |
Note générale : |
Chemical engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
Particle image velocimetry Gas-droplet-solid multiphase flow Gas desulfurization process Multifluid alkaline spray generator |
Résumé : |
Particle image velocimetry (PIV) technique was used to measure the velocity fields of gas−droplet−solid multiphase flow in the experimental setup of a novel semidry flue gas desulfurization process with a multifluid alkaline spray generator. The flow structure, mixing characteristic, and interphase interaction of gas−droplet−solid multiphase flow were investigated both in the confined alkaline spray generator and in the duct bent pipe section. The results show that sorbent particles in the confined alkaline spray generator are entrained into the spray core zone by a high-speed spray jet and most of the sorbent particles can be effectively humidified by spray water fine droplets to form aqueous lime slurry droplets. Moreover, a minimum amount of air stream in the generator is necessary to achieve higher collision humidification efficiency between sorbent particles and spray water droplets and to prevent the possible deposition of fine droplets on the wall. The appropriate penetration length of the slurry droplets from the generator can make uniform mixing between the formed slurry droplets and main air stream in the duct bent pipe section, which is beneficial to improving sulfur dioxide removal efficiency and to preventing the deposition of droplets on the wall. |
En ligne : |
http://pubs.acs.org/doi/abs/10.1021/ie8019714 |
in Industrial & engineering chemistry research > Vol. 48 N° 12 (Juin 2009) . - pp. 5808–5815
[article] Study on multiphase flow and mixing in semidry flue gas desulfurization with a multifluid alkaline spray generator using particle image velocimetry [texte imprimé] / Yuegui Zhou, Auteur ; Dongfu Wang, Auteur ; Mingchuan Zhang, Auteur . - 2009 . - pp. 5808–5815. Chemical engineering Langues : Anglais ( eng) in Industrial & engineering chemistry research > Vol. 48 N° 12 (Juin 2009) . - pp. 5808–5815
Mots-clés : |
Particle image velocimetry Gas-droplet-solid multiphase flow Gas desulfurization process Multifluid alkaline spray generator |
Résumé : |
Particle image velocimetry (PIV) technique was used to measure the velocity fields of gas−droplet−solid multiphase flow in the experimental setup of a novel semidry flue gas desulfurization process with a multifluid alkaline spray generator. The flow structure, mixing characteristic, and interphase interaction of gas−droplet−solid multiphase flow were investigated both in the confined alkaline spray generator and in the duct bent pipe section. The results show that sorbent particles in the confined alkaline spray generator are entrained into the spray core zone by a high-speed spray jet and most of the sorbent particles can be effectively humidified by spray water fine droplets to form aqueous lime slurry droplets. Moreover, a minimum amount of air stream in the generator is necessary to achieve higher collision humidification efficiency between sorbent particles and spray water droplets and to prevent the possible deposition of fine droplets on the wall. The appropriate penetration length of the slurry droplets from the generator can make uniform mixing between the formed slurry droplets and main air stream in the duct bent pipe section, which is beneficial to improving sulfur dioxide removal efficiency and to preventing the deposition of droplets on the wall. |
En ligne : |
http://pubs.acs.org/doi/abs/10.1021/ie8019714 |
|