Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur James M. Caruthers
Documents disponibles écrits par cet auteur
Affiner la rechercheBayesian framework for building kinetic models of catalytic systems / Shuo-Huan Hsu in Industrial & engineering chemistry research, Vol. 48 N° 10 (Mai 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 10 (Mai 2009) . - pp. 4768–4790
Titre : Bayesian framework for building kinetic models of catalytic systems Type de document : texte imprimé Auteurs : Shuo-Huan Hsu, Auteur ; Stephen D. Stamatis, Auteur ; James M. Caruthers, Auteur Année de publication : 2009 Article en page(s) : pp. 4768–4790 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Catalytic systems Bayesian approach Monte Carlo based methods Résumé : Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801651y [article] Bayesian framework for building kinetic models of catalytic systems [texte imprimé] / Shuo-Huan Hsu, Auteur ; Stephen D. Stamatis, Auteur ; James M. Caruthers, Auteur . - 2009 . - pp. 4768–4790.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 10 (Mai 2009) . - pp. 4768–4790
Mots-clés : Catalytic systems Bayesian approach Monte Carlo based methods Résumé : Recent advances in statistical procedures, coupled with the availability of high performance computational resources and the large mass of data generated from high throughput screening, have enabled a new paradigm for building mathematical models of the kinetic behavior of catalytic reactions. A Bayesian approach is used to formulate the model building problem, estimate model parameters by Monte Carlo based methods, discriminate rival models, and design new experiments to improve the discrimination and fidelity of the parameter estimates. The methodology is illustrated with a typical, model building problem involving three proposed Langmuir−Hinshelwood rate expressions. The Bayesian approach gives improved discrimination of the three models and higher quality model parameters for the best model selected as compared to the traditional methods that employ linearized statistical tools. This paper describes the methodology and its capabilities in sufficient detail to allow kinetic model builders to evaluate and implement its improved model discrimination and parameter estimation features. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801651y