Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ankit B. Gandhi
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment of unified correlations for volumetric mass-transfer coefficient and effective interfacial area in bubble column reactors for various gas-liquid systems using support vector regression / Ankit B. Gandhi in Industrial & engineering chemistry research, Vol. 48 N° 9 (Mai 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 9 (Mai 2009) . - pp. 4216–4236
Titre : Development of unified correlations for volumetric mass-transfer coefficient and effective interfacial area in bubble column reactors for various gas-liquid systems using support vector regression Type de document : texte imprimé Auteurs : Ankit B. Gandhi, Auteur ; Prashant P. Gupta, Auteur ; Jyeshtharaj B. Joshi, Auteur Année de publication : 2009 Article en page(s) : pp. 4216–4236 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Volumetric mass-transfer coefficient Unified correlation Bubble columns Gas−liquid systems Résumé : The objective of this study was to develop a unified correlation for the volumetric mass-transfer coefficient (kLa) and effective interfacial area (a) in bubble columns for various gas−liquid systems using support vector regression (SVR-) based modeling technique. From the data published in the open literature, 1600 data points from 27 open sources spanning the years 1965−2007 for kLa and 1330 data points from 28 open sources spanning the years 1968−2007 for a were collected. Generalized SVR-based models were developed for the relationship between kLa (and a) and each design and operating parameters such as column and sparger geometry, gas−liquid physical properties, operating temperature, pressure, superficial gas velocity, and so on. Further, these models for kLa and a are available online at http://www.esnips.com/web/UICT-NCL. The proposed generalized SVR-based correlations for kLa and a have prediction accuracies of 99.08% and 98.6% and average absolute relative errors (AAREs) of 7.12% and 5.01%, respectively. Also, the SVR-based correlation provided much improved predictions compared to those obtained using empirical correlations from the literature. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8003489 [article] Development of unified correlations for volumetric mass-transfer coefficient and effective interfacial area in bubble column reactors for various gas-liquid systems using support vector regression [texte imprimé] / Ankit B. Gandhi, Auteur ; Prashant P. Gupta, Auteur ; Jyeshtharaj B. Joshi, Auteur . - 2009 . - pp. 4216–4236.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 9 (Mai 2009) . - pp. 4216–4236
Mots-clés : Volumetric mass-transfer coefficient Unified correlation Bubble columns Gas−liquid systems Résumé : The objective of this study was to develop a unified correlation for the volumetric mass-transfer coefficient (kLa) and effective interfacial area (a) in bubble columns for various gas−liquid systems using support vector regression (SVR-) based modeling technique. From the data published in the open literature, 1600 data points from 27 open sources spanning the years 1965−2007 for kLa and 1330 data points from 28 open sources spanning the years 1968−2007 for a were collected. Generalized SVR-based models were developed for the relationship between kLa (and a) and each design and operating parameters such as column and sparger geometry, gas−liquid physical properties, operating temperature, pressure, superficial gas velocity, and so on. Further, these models for kLa and a are available online at http://www.esnips.com/web/UICT-NCL. The proposed generalized SVR-based correlations for kLa and a have prediction accuracies of 99.08% and 98.6% and average absolute relative errors (AAREs) of 7.12% and 5.01%, respectively. Also, the SVR-based correlation provided much improved predictions compared to those obtained using empirical correlations from the literature. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8003489