Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Paolo Nardelli
Documents disponibles écrits par cet auteur
Affiner la rechercheFull-scale application of the alternating oxic/anoxic process / Paolo Nardelli in Industrial & engineering chemistry research, Vol. 48 N° 7 (Avril 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 7 (Avril 2009) . - pp. 3526–3532
Titre : Full-scale application of the alternating oxic/anoxic process : an overview Type de document : texte imprimé Auteurs : Paolo Nardelli, Auteur ; Giovanni Gatti, Auteur ; Anna Laura Eusebi, Auteur Année de publication : 2009 Article en page(s) : pp. 3526–3532 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Wastewater treatment plants Alternate cycle process Nitrogen loading rate approach Résumé : This article describes the results obtained in terms of nitrogen removal, energy savings, and waste sludge production upon application of an alternate cycle process and a remote control system in real wastewater treatment plants (WWTPs). The experimentation, which lasted for eight months, was performed in three extended oxidation plants (denoted WWTP1, WWTP2, and WWTP3) characterized by different structural designs and sewerage influent macropollutant concentrations. The alternate cycle (AC) process provided good total nitrogen biological removal. The results obtained were due to the excellent reduction of nitrates. In fact, comparison with the pre-AC period showed an average decrease of NO3-N of about 64% in WWTP1, 62% in WWTP2, and 33% in WWTP3. The behavior of all WWTPs can be rationalized according to a nitrogen loading rate (NLR) approach, showing that its increment determined a reduction of the length of the anoxic phase to allow for ammonia oxidation. All of these conditions assured the satisfaction of the limit on total nitrogen in effluent established in directive EC 91/271. The energy savings (13−26%) was always observed to be related to the time spent in the anoxic phase during which the blowers were switched off and the mixers were used for mixed liquor suspension and nitrates denitrification. Moreover, it was demonstrated, as a new aspect, that application of the AC process was able to reduce the waste activated sludge by a biomass stressing during the anoxic conditions. In addition, in WWTP3 where the influent mass loading and effluent suspended solid removal mainly were controlled, a consistent specific sludge reduction (up to 47%) was observed. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8014796 [article] Full-scale application of the alternating oxic/anoxic process : an overview [texte imprimé] / Paolo Nardelli, Auteur ; Giovanni Gatti, Auteur ; Anna Laura Eusebi, Auteur . - 2009 . - pp. 3526–3532.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 7 (Avril 2009) . - pp. 3526–3532
Mots-clés : Wastewater treatment plants Alternate cycle process Nitrogen loading rate approach Résumé : This article describes the results obtained in terms of nitrogen removal, energy savings, and waste sludge production upon application of an alternate cycle process and a remote control system in real wastewater treatment plants (WWTPs). The experimentation, which lasted for eight months, was performed in three extended oxidation plants (denoted WWTP1, WWTP2, and WWTP3) characterized by different structural designs and sewerage influent macropollutant concentrations. The alternate cycle (AC) process provided good total nitrogen biological removal. The results obtained were due to the excellent reduction of nitrates. In fact, comparison with the pre-AC period showed an average decrease of NO3-N of about 64% in WWTP1, 62% in WWTP2, and 33% in WWTP3. The behavior of all WWTPs can be rationalized according to a nitrogen loading rate (NLR) approach, showing that its increment determined a reduction of the length of the anoxic phase to allow for ammonia oxidation. All of these conditions assured the satisfaction of the limit on total nitrogen in effluent established in directive EC 91/271. The energy savings (13−26%) was always observed to be related to the time spent in the anoxic phase during which the blowers were switched off and the mixers were used for mixed liquor suspension and nitrates denitrification. Moreover, it was demonstrated, as a new aspect, that application of the AC process was able to reduce the waste activated sludge by a biomass stressing during the anoxic conditions. In addition, in WWTP3 where the influent mass loading and effluent suspended solid removal mainly were controlled, a consistent specific sludge reduction (up to 47%) was observed. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8014796