Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. R. J. Arendsen
Documents disponibles écrits par cet auteur
Affiner la rechercheDynamic thermodynamics with internal energy, volume, and amount of moles as states / A. R. J. Arendsen in Industrial & engineering chemistry research, Vol. 48 N° 6 (Mars 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N° 6 (Mars 2009) . - pp. 3167–3176
Titre : Dynamic thermodynamics with internal energy, volume, and amount of moles as states : application to liquefied gas tank Type de document : texte imprimé Auteurs : A. R. J. Arendsen, Auteur ; G. F. Versteeg, Auteur Année de publication : 2009 Article en page(s) : pp. 3167–3176 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Dynamic models Redlich-Kwong cubic equation of state Peng-Robinson cubic equation of state Résumé : Dynamic models for process design, optimization, and control usually solve a set of heat and/or mass balances as a function of time and/or position in the process. To obtain more robust dynamic models and to minimize the amount of assumptions, internal energy, volume, and amount of moles are chosen as states for the conservation laws of the dynamic model. Temperature, pressure, and the amount and composition of the phases are calculated on the basis of these states at every time step. The Redlich−Kwong and Peng−Robinson (RK-PR) cubic equation of state is used as the thermodynamic model. This study describes the aspects of this approach and additionally gives a wide view over the whole internal energy and volume surface in specific phase diagrams. A complete separation between the dynamic balance model and the thermodynamic model is achieved. Several examples show the application of this approach for a liquefied gas tank and demonstrate that the method is applicable to one and two phases in a wide temperature and pressure range, from liquid and/or gas phase to supercritical conditions. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801273a [article] Dynamic thermodynamics with internal energy, volume, and amount of moles as states : application to liquefied gas tank [texte imprimé] / A. R. J. Arendsen, Auteur ; G. F. Versteeg, Auteur . - 2009 . - pp. 3167–3176.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N° 6 (Mars 2009) . - pp. 3167–3176
Mots-clés : Dynamic models Redlich-Kwong cubic equation of state Peng-Robinson cubic equation of state Résumé : Dynamic models for process design, optimization, and control usually solve a set of heat and/or mass balances as a function of time and/or position in the process. To obtain more robust dynamic models and to minimize the amount of assumptions, internal energy, volume, and amount of moles are chosen as states for the conservation laws of the dynamic model. Temperature, pressure, and the amount and composition of the phases are calculated on the basis of these states at every time step. The Redlich−Kwong and Peng−Robinson (RK-PR) cubic equation of state is used as the thermodynamic model. This study describes the aspects of this approach and additionally gives a wide view over the whole internal energy and volume surface in specific phase diagrams. A complete separation between the dynamic balance model and the thermodynamic model is achieved. Several examples show the application of this approach for a liquefied gas tank and demonstrate that the method is applicable to one and two phases in a wide temperature and pressure range, from liquid and/or gas phase to supercritical conditions. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801273a