Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zebao Rui
Documents disponibles écrits par cet auteur
Affiner la rechercheHigh-temperature stability of palladium membranes on porous metal supports with different intermediate layers / Ke Zhang in Industrial & engineering chemistry research, Vol. 48 N°4 (Février 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N°4 (Février 2009) . - pp. 1880–1886
Titre : High-temperature stability of palladium membranes on porous metal supports with different intermediate layers Type de document : texte imprimé Auteurs : Ke Zhang, Auteur ; Huiyuan Gao, Auteur ; Zebao Rui, Auteur Année de publication : 2009 Article en page(s) : pp. 1880–1886 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Palladium membranes Porous stainless steel Yttria stabilized zirconia Résumé : The effectiveness of intermediate layer to prevent intermetallic diffusion is a key factor for application of Pd membranes on porous stainless steel (PSS) support. In this work, electroless-plated Pd membranes were prepared on PSS disks with two different intermediate layers: in situ oxidized metal oxide and sol−gel derived mesoporous yttria stabilized zirconia (YSZ). A thinner, gastight Pd layer can be formed on PSS support with the YSZ intermediate layer, resulting in a higher hydrogen permeance than Pd membranes on PSS support with the in situ oxidized metal oxide intermediate layer. High temperature permeation and 100-h stability tests showed that both intermediate layers were effective as the diffusion barrier for Pd membranes on PSS supports in the temperature range of 773−873 K. At temperatures above 873 K, only the YSZ intermediate layer is effective in preventing intermetallic diffusion and gives a stable Pd membrane. At the elevated temperatures Pd membranes on PSS support with in situ oxidation layer suffer from a chemical and mechanical stability problem due to reduction of metal oxides in hydrogen atmosphere which results in intermetallic diffusion and possibly weakens the adhesion of the Pd layer on PSS support. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801417w [article] High-temperature stability of palladium membranes on porous metal supports with different intermediate layers [texte imprimé] / Ke Zhang, Auteur ; Huiyuan Gao, Auteur ; Zebao Rui, Auteur . - 2009 . - pp. 1880–1886.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°4 (Février 2009) . - pp. 1880–1886
Mots-clés : Palladium membranes Porous stainless steel Yttria stabilized zirconia Résumé : The effectiveness of intermediate layer to prevent intermetallic diffusion is a key factor for application of Pd membranes on porous stainless steel (PSS) support. In this work, electroless-plated Pd membranes were prepared on PSS disks with two different intermediate layers: in situ oxidized metal oxide and sol−gel derived mesoporous yttria stabilized zirconia (YSZ). A thinner, gastight Pd layer can be formed on PSS support with the YSZ intermediate layer, resulting in a higher hydrogen permeance than Pd membranes on PSS support with the in situ oxidized metal oxide intermediate layer. High temperature permeation and 100-h stability tests showed that both intermediate layers were effective as the diffusion barrier for Pd membranes on PSS supports in the temperature range of 773−873 K. At temperatures above 873 K, only the YSZ intermediate layer is effective in preventing intermetallic diffusion and gives a stable Pd membrane. At the elevated temperatures Pd membranes on PSS support with in situ oxidation layer suffer from a chemical and mechanical stability problem due to reduction of metal oxides in hydrogen atmosphere which results in intermetallic diffusion and possibly weakens the adhesion of the Pd layer on PSS support. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801417w