Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur R. L. Beurle
Documents disponibles écrits par cet auteur
Affiner la recherche
Titre : Analysis of the tapered waveguide Type de document : texte imprimé Auteurs : A. Belghoraf, Auteur ; R. L. Beurle, Directeur de thèse Editeur : Nottingham : University of Nottingham Année de publication : 1984 Importance : 110 f. Présentation : ill. Format : 27 cm. Note générale : Thèse de Doctorat : Électronique : Angleterre, University of Nottingham : 1984
Bibliogr. f. 130 - 132. Annexe f. 111 - 129Langues : Anglais (eng) Mots-clés : Tapered waveguide problems
Plane wave spectral analysis
Intrinsic mode theory
Parabolic equation methodIndex. décimale : D003484 Résumé : This thesis describes analytical and numerical investigations of tapered waveguide problems, for intergrated optics applications.
A plane wave spectral analysis, models the propagation process of the tapered waveguide and introduces the concept of an Intrinsic spectral Integral, which turns out to be in good agreement with calculation in terms of Adiabatic modes.
This allows us to extend the Intrinsic mode concept beyond the singularity where the Adiabatic mode concept breaks down.
In this sense, the implementation of the resulting spectral formulation, for the case of homogeneous media, contains all information pertinent to the modal propagation mechanism, inside and outside the tapered waveguide; before and after the singularity caused by cut off of the Adiabatic mode.
The thesis is mainly concerned with implementing the Intrinsic mode theory as a numerical computational tool.
In this respect, very good agreement is demonstrated between this model and calculations performed numerically using the parabolic equation method.
On the other hand, the new model contains far greater physical and analytical possibilities than previous methods.Analysis of the tapered waveguide [texte imprimé] / A. Belghoraf, Auteur ; R. L. Beurle, Directeur de thèse . - Nottingham : University of Nottingham, 1984 . - 110 f. : ill. ; 27 cm.
Thèse de Doctorat : Électronique : Angleterre, University of Nottingham : 1984
Bibliogr. f. 130 - 132. Annexe f. 111 - 129
Langues : Anglais (eng)
Mots-clés : Tapered waveguide problems
Plane wave spectral analysis
Intrinsic mode theory
Parabolic equation methodIndex. décimale : D003484 Résumé : This thesis describes analytical and numerical investigations of tapered waveguide problems, for intergrated optics applications.
A plane wave spectral analysis, models the propagation process of the tapered waveguide and introduces the concept of an Intrinsic spectral Integral, which turns out to be in good agreement with calculation in terms of Adiabatic modes.
This allows us to extend the Intrinsic mode concept beyond the singularity where the Adiabatic mode concept breaks down.
In this sense, the implementation of the resulting spectral formulation, for the case of homogeneous media, contains all information pertinent to the modal propagation mechanism, inside and outside the tapered waveguide; before and after the singularity caused by cut off of the Adiabatic mode.
The thesis is mainly concerned with implementing the Intrinsic mode theory as a numerical computational tool.
In this respect, very good agreement is demonstrated between this model and calculations performed numerically using the parabolic equation method.
On the other hand, the new model contains far greater physical and analytical possibilities than previous methods.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire D003484 D003484 Papier + ressource électronique Bibliothèque centrale Thèse de Doctorat Disponible Electronique Consultation sur place/Téléchargeable Documents numériques
BELGHORAF.A.pdfURL