Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur María Sol Fraguío
Documents disponibles écrits par cet auteur
Affiner la rechercheFlow regime diagnosis in bubble columns via pressure fluctuations and computer-assisted radioactive particle tracking measurements / María Sol Fraguío in Industrial & engineering chemistry research, Vol. 48 N°3 (Février 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1072–1080
Titre : Flow regime diagnosis in bubble columns via pressure fluctuations and computer-assisted radioactive particle tracking measurements Type de document : texte imprimé Auteurs : María Sol Fraguío, Auteur ; Miryan C. Cassanello, Auteur ; Sujatha Degaleesan, Auteur ; Milorad Dudukovic, Auteur Année de publication : 2009 Article en page(s) : p. 1072–1080 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Flow regime Bubble columns industrial column Radioactivite Résumé : The importance of diagnosing the flow regime in bubble columns by noninvasive and easy-to-implement methods is well-known. Hence, the aim of this work is to diagnose the flow regime in a pilot scale bubble column by comparing the attractor that gives the fingerprint of a tested underlying hydrodynamic condition against the attractor of a reference condition, using the statistical S test, developed by Diks et al.(1) The attractors are reconstructed from the time series of two characteristic variables: the trajectory of a liquid flow follower, determined by CARPT (computer-assisted particle tracking), and pressure fluctuations. Since CARPT fully maps the hydrodynamics in multiphase systems in a Lagrangian sense, the tracer particle trajectory time series is used to establish the optimal set of parameters required for the S test when analyzing pressure fluctuations. This work demonstrates that the same set of optimal parameters determined when applying the S test to CARPT experimental time series leads to successful flow regime identification when applying the global S test to pressure fluctuation signals detected at various locations. This validates the use of pressure fluctuation signals in industrial settings as an economic way to detect flow regimes. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800549d [article] Flow regime diagnosis in bubble columns via pressure fluctuations and computer-assisted radioactive particle tracking measurements [texte imprimé] / María Sol Fraguío, Auteur ; Miryan C. Cassanello, Auteur ; Sujatha Degaleesan, Auteur ; Milorad Dudukovic, Auteur . - 2009 . - p. 1072–1080.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1072–1080
Mots-clés : Flow regime Bubble columns industrial column Radioactivite Résumé : The importance of diagnosing the flow regime in bubble columns by noninvasive and easy-to-implement methods is well-known. Hence, the aim of this work is to diagnose the flow regime in a pilot scale bubble column by comparing the attractor that gives the fingerprint of a tested underlying hydrodynamic condition against the attractor of a reference condition, using the statistical S test, developed by Diks et al.(1) The attractors are reconstructed from the time series of two characteristic variables: the trajectory of a liquid flow follower, determined by CARPT (computer-assisted particle tracking), and pressure fluctuations. Since CARPT fully maps the hydrodynamics in multiphase systems in a Lagrangian sense, the tracer particle trajectory time series is used to establish the optimal set of parameters required for the S test when analyzing pressure fluctuations. This work demonstrates that the same set of optimal parameters determined when applying the S test to CARPT experimental time series leads to successful flow regime identification when applying the global S test to pressure fluctuation signals detected at various locations. This validates the use of pressure fluctuation signals in industrial settings as an economic way to detect flow regimes. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800549d