Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Michael Peters
Documents disponibles écrits par cet auteur
Affiner la rechercheCompleting irving and kirkwood’s molecular theory of transport processes / Michael Peters in Industrial & engineering chemistry research, Vol. 48 N°1 (Janvier 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N°1 (Janvier 2009) . - p. 166-171
Titre : Completing irving and kirkwood’s molecular theory of transport processes : nonequilibrium entropy conservation Type de document : texte imprimé Auteurs : Michael Peters, Editeur scientifique Année de publication : 2009 Article en page(s) : p. 166-171 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Irving and Kirkwood’s Nonequilibrium entropy Résumé : Following Irving and Kirkwood’s (J. Chem. Phys. 1950, 18, 817) classical approach to the statistical mechanics of transport processes and the conservation equations for mass, momentum, and energy, we introduce a particular dynamical variable for entropy and derive the general nonequilibrium entropy conservation equation. This particular formalism is shown to encompass both Boltzmann’s and Gibbs’ entropy definitions as special cases. Entropy generation is shown to follow from phase-space dimensionality loss and truncations or approximations in higher-order space, the latter of which is consistent with the thesis of Jaynes (Am. J. Phys. 1965, 33, 391). The general approach to entropy conservation given here not only completes Irving and Kirkwood’s treatment of the transport equations but also allows for a consistent analysis of all transport equations for any given system. Following standard perturbation expansion methods about local equilibrium states, we derive the closed form of the entropy conservation equation for isolated systems, which is shown to be in agreement with well-known phenomenological results and the principles of irreversible thermodynamics. In addition, the generalized nonequilibrium entropy developed here is fully consistent with its equilibrium counterpart. As an example, our formalism allows the analysis of entropy changes in dense gases and liquids through the introduction of a nonequilibrium Green’s entropy. This study provides a firm molecular basis of entropy conservation by consistent methods across the transport equations, allowing ready extensions to complex systems. Such foundations are of contemporary importance in designing energy-efficient or minimum entropy generating engineering systems. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800170s [article] Completing irving and kirkwood’s molecular theory of transport processes : nonequilibrium entropy conservation [texte imprimé] / Michael Peters, Editeur scientifique . - 2009 . - p. 166-171.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°1 (Janvier 2009) . - p. 166-171
Mots-clés : Irving and Kirkwood’s Nonequilibrium entropy Résumé : Following Irving and Kirkwood’s (J. Chem. Phys. 1950, 18, 817) classical approach to the statistical mechanics of transport processes and the conservation equations for mass, momentum, and energy, we introduce a particular dynamical variable for entropy and derive the general nonequilibrium entropy conservation equation. This particular formalism is shown to encompass both Boltzmann’s and Gibbs’ entropy definitions as special cases. Entropy generation is shown to follow from phase-space dimensionality loss and truncations or approximations in higher-order space, the latter of which is consistent with the thesis of Jaynes (Am. J. Phys. 1965, 33, 391). The general approach to entropy conservation given here not only completes Irving and Kirkwood’s treatment of the transport equations but also allows for a consistent analysis of all transport equations for any given system. Following standard perturbation expansion methods about local equilibrium states, we derive the closed form of the entropy conservation equation for isolated systems, which is shown to be in agreement with well-known phenomenological results and the principles of irreversible thermodynamics. In addition, the generalized nonequilibrium entropy developed here is fully consistent with its equilibrium counterpart. As an example, our formalism allows the analysis of entropy changes in dense gases and liquids through the introduction of a nonequilibrium Green’s entropy. This study provides a firm molecular basis of entropy conservation by consistent methods across the transport equations, allowing ready extensions to complex systems. Such foundations are of contemporary importance in designing energy-efficient or minimum entropy generating engineering systems. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800170s