Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Andreas Bernas
Documents disponibles écrits par cet auteur
Affiner la rechercheHydroformylation of 1-butene on Rh catalyst / Tapio Salmi in Industrial & engineering chemistry research, Vol. 48 N°3 (Février 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1325–1331
Titre : Hydroformylation of 1-butene on Rh catalyst Type de document : texte imprimé Auteurs : Tapio Salmi, Auteur ; Johan Ahlkvist, Auteur ; Andreas Bernas, Auteur Année de publication : 2009 Article en page(s) : p. 1325–1331 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Hydroformylation Rhodium catalyst Butene Résumé : Kinetics of homogeneously catalyzed hydroformylation of 1-butene was studied in a pressurized semibatch autoclave reactor. Kinetics was determined for a reaction mixture, which consisted of 1-butene, carbon monoxide, hydrogen, a rhodium-based catalyst, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate as a solvent. The following reaction parameters were investigated: temperature (70−100 °C), total pressure (1−3 MPa), catalyst concentration (100−200 ppm), catalyst (Rh)-to-ligand ratio, and the initial ratio of the synthesis gas (hydrogen and carbon dioxide) components. The solubility of 1-butene, carbon monoxide, and hydrogen in the solvent was determined by precise pressure and weight measurements and modeled mathematically. The main reaction products were pentanal (P) and 2-methylbutanal (MB), while trace amounts of cis-2- and trans-2-butene were detected as reaction intermediates. The ratio of the main products (P and MB) was practically independent of temperature, but the ligand-to-Rh ratio affected considerably the product distribution: an increasing ratio preferred the formation of pentanal (P). Increasing total pressure diminished the yield of pentanal (P). On the basis of the experimentally recorded kinetic data, a stoichiometric scheme was constructed and simplified. The kinetic data were combined with solubility models, and the parameters of an empirical power-law rate model were determined by nonlinear regression analysis. The kinetic parameters were well identified and physically reasonable being in accordance with qualitative observations. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800215t [article] Hydroformylation of 1-butene on Rh catalyst [texte imprimé] / Tapio Salmi, Auteur ; Johan Ahlkvist, Auteur ; Andreas Bernas, Auteur . - 2009 . - p. 1325–1331.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1325–1331
Mots-clés : Hydroformylation Rhodium catalyst Butene Résumé : Kinetics of homogeneously catalyzed hydroformylation of 1-butene was studied in a pressurized semibatch autoclave reactor. Kinetics was determined for a reaction mixture, which consisted of 1-butene, carbon monoxide, hydrogen, a rhodium-based catalyst, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate as a solvent. The following reaction parameters were investigated: temperature (70−100 °C), total pressure (1−3 MPa), catalyst concentration (100−200 ppm), catalyst (Rh)-to-ligand ratio, and the initial ratio of the synthesis gas (hydrogen and carbon dioxide) components. The solubility of 1-butene, carbon monoxide, and hydrogen in the solvent was determined by precise pressure and weight measurements and modeled mathematically. The main reaction products were pentanal (P) and 2-methylbutanal (MB), while trace amounts of cis-2- and trans-2-butene were detected as reaction intermediates. The ratio of the main products (P and MB) was practically independent of temperature, but the ligand-to-Rh ratio affected considerably the product distribution: an increasing ratio preferred the formation of pentanal (P). Increasing total pressure diminished the yield of pentanal (P). On the basis of the experimentally recorded kinetic data, a stoichiometric scheme was constructed and simplified. The kinetic data were combined with solubility models, and the parameters of an empirical power-law rate model were determined by nonlinear regression analysis. The kinetic parameters were well identified and physically reasonable being in accordance with qualitative observations. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800215t Kinetic modeling of propene hydroformylation with Rh/TPP and Rh/CHDPP catalysts / Andreas Bernas in Industrial & engineering chemistry research, Vol. 47 N° 13 (Juillet 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N° 13 (Juillet 2008) . - p. 4317–4324
Titre : Kinetic modeling of propene hydroformylation with Rh/TPP and Rh/CHDPP catalysts Type de document : texte imprimé Auteurs : Andreas Bernas, Auteur ; Paivi Maki-Arvela, Auteur ; Juha Lehtonen, Auteur ; Tapio Salmi, Auteur Année de publication : 2008 Article en page(s) : p. 4317–4324 Note générale : Bibliogr. p. 4324 Langues : Anglais (eng) Mots-clés : Propene hydroformylation; Solubility; Rhodium/triphenylphosphine catalysts Résumé : Hydroformylation of propene to isobutyraldehyde and n-butyraldehyde was studied in the kinetic regime in a semibatch stainless steel reactor at 70−115 °C and 1−15 bar overpressure in 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate solvent with rhodium/cyclohexyl diphenylphosphine (Rh/CHDPP) and rhodium/triphenylphosphine (Rh/TPP) catalysts. The influence of process parameters such as Rh concentration (50−250 ppm), ligand mass fraction (0−10 wt %), H2-to-CO ratio, and stirring power was investigated and the influence of solvent concentration was studied by using mixtures of valeraldehyde and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate as solvent. The solubility of propene, H2, and CO in 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate was measured in the same reactor. Rh/CHDPP showed lower normal/isometric aldehyde ratio (n/i) than Rh/TPP. The rate was temperature and pressure dependent, while the Rh concentration or syngas composition did not have any significant impact. The n/i ratio was always independent of the conversion, but dependent on the ligand concentration: higher ligand concentration promoted isobutyraldehyde formation. Based on experimentally recorded kinetic data, a stoichiometric scheme was proposed and parameters of power-law rate models were determined by using nonlinear regression analysis. The experimental system was described as a perfectly mixed gas−liquid reactor. As showed by sensitivity analysis, the kinetic parameters were well identified and physically reasonable and they were in accordance with qualitative observations. The kinetic models with a degree of explanation of more than 0.9 described the formation of the products with satisfying accuracy. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071401r [article] Kinetic modeling of propene hydroformylation with Rh/TPP and Rh/CHDPP catalysts [texte imprimé] / Andreas Bernas, Auteur ; Paivi Maki-Arvela, Auteur ; Juha Lehtonen, Auteur ; Tapio Salmi, Auteur . - 2008 . - p. 4317–4324.
Bibliogr. p. 4324
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N° 13 (Juillet 2008) . - p. 4317–4324
Mots-clés : Propene hydroformylation; Solubility; Rhodium/triphenylphosphine catalysts Résumé : Hydroformylation of propene to isobutyraldehyde and n-butyraldehyde was studied in the kinetic regime in a semibatch stainless steel reactor at 70−115 °C and 1−15 bar overpressure in 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate solvent with rhodium/cyclohexyl diphenylphosphine (Rh/CHDPP) and rhodium/triphenylphosphine (Rh/TPP) catalysts. The influence of process parameters such as Rh concentration (50−250 ppm), ligand mass fraction (0−10 wt %), H2-to-CO ratio, and stirring power was investigated and the influence of solvent concentration was studied by using mixtures of valeraldehyde and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate as solvent. The solubility of propene, H2, and CO in 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate was measured in the same reactor. Rh/CHDPP showed lower normal/isometric aldehyde ratio (n/i) than Rh/TPP. The rate was temperature and pressure dependent, while the Rh concentration or syngas composition did not have any significant impact. The n/i ratio was always independent of the conversion, but dependent on the ligand concentration: higher ligand concentration promoted isobutyraldehyde formation. Based on experimentally recorded kinetic data, a stoichiometric scheme was proposed and parameters of power-law rate models were determined by using nonlinear regression analysis. The experimental system was described as a perfectly mixed gas−liquid reactor. As showed by sensitivity analysis, the kinetic parameters were well identified and physically reasonable and they were in accordance with qualitative observations. The kinetic models with a degree of explanation of more than 0.9 described the formation of the products with satisfying accuracy. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071401r