Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhiqiang Wang
Documents disponibles écrits par cet auteur
Affiner la rechercheMnemonic enhancement optimization (MEO) for real-time optimization of industrial processes / Xueyi Fang in Industrial & engineering chemistry research, Vol. 48 N°1 (Janvier 2009)
[article]
in Industrial & engineering chemistry research > Vol. 48 N°1 (Janvier 2009) . - P. 499-509
Titre : Mnemonic enhancement optimization (MEO) for real-time optimization of industrial processes Type de document : texte imprimé Auteurs : Xueyi Fang, Editeur scientifique ; Zhijiang Shao, Editeur scientifique ; Zhiqiang Wang, Editeur scientifique Année de publication : 2009 Article en page(s) : P. 499-509 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Mnemonic Enhancement Optimization (MEO) Optimization of Industrial Real-time optimization (RTO) Résumé : In this paper, the model-based real-time optimization (RTO) is viewed as a kind of nonlinear parametric optimization problem which is solved repeatedly when parameter values change. A novel RTO strategy—mnemonic enhancement optimization (MEO)—is proposed. The method preserves the past optimal solutions and corresponding parameter values as experience and approximates the optimum based on the experience. The approximation is used by the optimization algorithm as a starting point to find the real optimum. The optimum is proved to be a continuous function of the parameter. This ensures that the distance between the optimum and the initial point tends to decrease as RTO continues to run. Thus MEO can improve the performance of RTO continually. Numerical experiments illustrate the continuity of the optimal set mapping, and the MEO method is compared with the traditional method. The results show that MEO outperforms the traditional method concerning the solution time, the number of iterations, and the percentage of successful optimizations. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800166p [article] Mnemonic enhancement optimization (MEO) for real-time optimization of industrial processes [texte imprimé] / Xueyi Fang, Editeur scientifique ; Zhijiang Shao, Editeur scientifique ; Zhiqiang Wang, Editeur scientifique . - 2009 . - P. 499-509.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°1 (Janvier 2009) . - P. 499-509
Mots-clés : Mnemonic Enhancement Optimization (MEO) Optimization of Industrial Real-time optimization (RTO) Résumé : In this paper, the model-based real-time optimization (RTO) is viewed as a kind of nonlinear parametric optimization problem which is solved repeatedly when parameter values change. A novel RTO strategy—mnemonic enhancement optimization (MEO)—is proposed. The method preserves the past optimal solutions and corresponding parameter values as experience and approximates the optimum based on the experience. The approximation is used by the optimization algorithm as a starting point to find the real optimum. The optimum is proved to be a continuous function of the parameter. This ensures that the distance between the optimum and the initial point tends to decrease as RTO continues to run. Thus MEO can improve the performance of RTO continually. Numerical experiments illustrate the continuity of the optimal set mapping, and the MEO method is compared with the traditional method. The results show that MEO outperforms the traditional method concerning the solution time, the number of iterations, and the percentage of successful optimizations. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800166p