Détail de l'auteur
Auteur Reza Barzin |
Documents disponibles écrits par cet auteur (1)



Estimation of aniline point temperature of pure hydrocarbons / Farhad Gharagheizi in Industrial & engineering chemistry research, Vol. 48 N°3 (Février 2009)
![]()
[article]
Titre : Estimation of aniline point temperature of pure hydrocarbons : a quantitative structure-property relationship approach Type de document : texte imprimé Auteurs : Farhad Gharagheizi, Auteur ; Behnam Tirandazi, Auteur ; Reza Barzin, Auteur Année de publication : 2009 Article en page(s) : p. 1678–1682 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Aniline Hydrocarbons Structure -- quantitative study Material physicochemical properties Résumé :
In the present work, a quantitative structure-property relationship (QSPR) study is performed to predict the aniline point temperature of pure hydrocarbon components. As a powerful tool, genetic algorithm-based multivariate linear regression (GA-MLR) is applied to select most statistically effective molecular descriptors on the aniline point temperature of pure hydrocarbon components. Also, a three-layer feed forward neural network (FFNN) is constructed to consider the nonlinear behavior of appearing molecular descriptors in GA-MLR result. The obtained results show that the constructed FFNN can accurately predict the aniline point temperature of pure hydrocarbon components.En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801212a
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1678–1682[article] Estimation of aniline point temperature of pure hydrocarbons : a quantitative structure-property relationship approach [texte imprimé] / Farhad Gharagheizi, Auteur ; Behnam Tirandazi, Auteur ; Reza Barzin, Auteur . - 2009 . - p. 1678–1682.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 48 N°3 (Février 2009) . - p. 1678–1682
Mots-clés : Aniline Hydrocarbons Structure -- quantitative study Material physicochemical properties Résumé :
In the present work, a quantitative structure-property relationship (QSPR) study is performed to predict the aniline point temperature of pure hydrocarbon components. As a powerful tool, genetic algorithm-based multivariate linear regression (GA-MLR) is applied to select most statistically effective molecular descriptors on the aniline point temperature of pure hydrocarbon components. Also, a three-layer feed forward neural network (FFNN) is constructed to consider the nonlinear behavior of appearing molecular descriptors in GA-MLR result. The obtained results show that the constructed FFNN can accurately predict the aniline point temperature of pure hydrocarbon components.En ligne : http://pubs.acs.org/doi/abs/10.1021/ie801212a Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire