Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Bradley R. Johnson
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment of a micropyrolyzer for enhanced Isotope ratio measurement / Jianli Hu ; Robert A. Dagle ; Bradley R. Johnson ; Helen W. Kreuzer in Industrial & engineering chemistry research, Vol. 47 n°22 (Novembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°22 (Novembre 2008) . - p. 8625–8630
Titre : Development of a micropyrolyzer for enhanced Isotope ratio measurement Type de document : texte imprimé Auteurs : Jianli Hu, Auteur ; Robert A. Dagle, Auteur ; Bradley R. Johnson, Auteur ; Helen W. Kreuzer, Auteur Année de publication : 2008 Article en page(s) : p. 8625–8630 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Micropyrolyzer Résumé : This paper presents design, fabrication, and testing of a microscale ceramic reactor for the pyrolysis of organic compounds. One application for this pyrolysis reactor is to convert the oxygen and hydrogen atoms in organic compounds to CO and H2 for isotope ratio measurements in a continuous flow mode. Existing commercial pyrolyzers use high carrier gas flow rates (typically 80−100 mL/min) such that >95% of the CO and H2 produced from a given sample is vented before introduction into the mass spectrometer. We describe here the fabrication and testing of a microscale pyrolysis reactor designed to be compatible with existing isotope ratio mass spectrometers. The microreactor uses carrier gas flow rates of 3−5 mL/min, decreasing the proportion of the CO and H2 lost in venting and permitting analysis of samples 20−50 times smaller than can be analyzed with conventional pyrolysis reactors. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanolamine, can be fully decomposed to desired products CO and H2, at a temperature of 1200 °C, which is 200 °C lower than conventionally reported. Furthermore, we are able to eliminate undesired products such as methane and CO2 in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micropyrolyzer quantitatively converts organic compounds to gases suitable for isotope ratio analysis. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8009236 [article] Development of a micropyrolyzer for enhanced Isotope ratio measurement [texte imprimé] / Jianli Hu, Auteur ; Robert A. Dagle, Auteur ; Bradley R. Johnson, Auteur ; Helen W. Kreuzer, Auteur . - 2008 . - p. 8625–8630.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°22 (Novembre 2008) . - p. 8625–8630
Mots-clés : Micropyrolyzer Résumé : This paper presents design, fabrication, and testing of a microscale ceramic reactor for the pyrolysis of organic compounds. One application for this pyrolysis reactor is to convert the oxygen and hydrogen atoms in organic compounds to CO and H2 for isotope ratio measurements in a continuous flow mode. Existing commercial pyrolyzers use high carrier gas flow rates (typically 80−100 mL/min) such that >95% of the CO and H2 produced from a given sample is vented before introduction into the mass spectrometer. We describe here the fabrication and testing of a microscale pyrolysis reactor designed to be compatible with existing isotope ratio mass spectrometers. The microreactor uses carrier gas flow rates of 3−5 mL/min, decreasing the proportion of the CO and H2 lost in venting and permitting analysis of samples 20−50 times smaller than can be analyzed with conventional pyrolysis reactors. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanolamine, can be fully decomposed to desired products CO and H2, at a temperature of 1200 °C, which is 200 °C lower than conventionally reported. Furthermore, we are able to eliminate undesired products such as methane and CO2 in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micropyrolyzer quantitatively converts organic compounds to gases suitable for isotope ratio analysis. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8009236