Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur R. G. Forbes
Documents disponibles écrits par cet auteur
Affiner la recherche
Titre : Applications of field-evaporation theory Type de document : texte imprimé Auteurs : Khaled Chibane, Auteur ; R. G. Forbes, Directeur de thèse Editeur : Birmingham : University of Aston Année de publication : 1985 Importance : 240 f. Présentation : ill. Format : 29 cm. Note générale : Thèse de Doctorat : Électronique : Birmingham, University of Aston: 1985
Annexe f. 241 - 264 . Bibliogr. f. 265 - 273Langues : Anglais (eng) Mots-clés : Field-ion emission
Field-evaporation
Surface atomic parametersIndex. décimale : D006285 Résumé : This thesis is concerned with the application of the theory of the evaporation of metal atoms from a surface under the influence of a strong electric field.
The theory of field evaporation under discussion, put forward by Forbes, assumes that the shape of the atomic bonding-well is parabolic and also that a Gomer-type mechanism operates.
When this theory is combined with a standard Arrhenius-type emission equation, we predict linear relationships between T² and l/F and also between Xcr and Q¹/², where T is the temperature, F the electric field necessary for evaporation, Xcr the crossing point of the atomic and ionic curves and Q the activation energy.
Experimental results obtained by various workers using Tungsten, Molybdenum and Rhodium tips in an electric field, are compared with this theory over a limited temperature range.
The employment of other forms for the atomic bonding-well has also been investigated, in order to improve the performance of the theory at high temperatures.
In the case of Rhodium, values have been derived for some surface atomic parameters, namely, the electrical bonding distance of a surface atom nucleus and the vibrational force-constant and frequency of a typical surface atom.Applications of field-evaporation theory [texte imprimé] / Khaled Chibane, Auteur ; R. G. Forbes, Directeur de thèse . - Birmingham (Birmingham) : University of Aston, 1985 . - 240 f. : ill. ; 29 cm.
Thèse de Doctorat : Électronique : Birmingham, University of Aston: 1985
Annexe f. 241 - 264 . Bibliogr. f. 265 - 273
Langues : Anglais (eng)
Mots-clés : Field-ion emission
Field-evaporation
Surface atomic parametersIndex. décimale : D006285 Résumé : This thesis is concerned with the application of the theory of the evaporation of metal atoms from a surface under the influence of a strong electric field.
The theory of field evaporation under discussion, put forward by Forbes, assumes that the shape of the atomic bonding-well is parabolic and also that a Gomer-type mechanism operates.
When this theory is combined with a standard Arrhenius-type emission equation, we predict linear relationships between T² and l/F and also between Xcr and Q¹/², where T is the temperature, F the electric field necessary for evaporation, Xcr the crossing point of the atomic and ionic curves and Q the activation energy.
Experimental results obtained by various workers using Tungsten, Molybdenum and Rhodium tips in an electric field, are compared with this theory over a limited temperature range.
The employment of other forms for the atomic bonding-well has also been investigated, in order to improve the performance of the theory at high temperatures.
In the case of Rhodium, values have been derived for some surface atomic parameters, namely, the electrical bonding distance of a surface atom nucleus and the vibrational force-constant and frequency of a typical surface atom.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Spécialité Etat_Exemplaire D006285 D006285 Papier Bibliothèque centrale Thèse de Doctorat Disponible Documents numériques
CHIBANE.Khaled.pdfURL