Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur San-Yin Ding
Documents disponibles écrits par cet auteur
Affiner la rechercheModel predictive control of nonlinear distributed parameter systems using spatial neural-network architectures / Wei, Wu in Industrial & engineering chemistry research, Vol. 47 N°19 (Octobre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N°19 (Octobre 2008) . - p. 7264–7273
Titre : Model predictive control of nonlinear distributed parameter systems using spatial neural-network architectures Type de document : texte imprimé Auteurs : Wei, Wu, Auteur ; San-Yin Ding, Auteur Année de publication : 2008 Article en page(s) : p. 7264–7273 Note générale : Chemical engineering Langues : Anglais (eng) Mots-clés : Partial differential equations Neural-network architecture Closed-loop control system Note de contenu :
In this paper the distributed parameter systems comprise first-order partial differential equations coupled with ordinary differential equations. Through time and space discretization the explicit formulation of finite-difference model is constructed. Under effects of unknown disturbances and parameter uncertainties, an online learning algorithm, by virtue of the minimal output error between the system and neuro model, is developed. If only a few output measurements are available, the spatial feedforward neural-network architecture is integrated into the nondistributed predictive control framework. The stability analysis of the closed-loop control system is addressed through the discrete-time Lyapunov function approach. Two examples including a bioreactor system governed by the population balance equation and the nonisothermal tubular reactor system are used to verify the effectiveness of the proposed method.En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800474m [article] Model predictive control of nonlinear distributed parameter systems using spatial neural-network architectures [texte imprimé] / Wei, Wu, Auteur ; San-Yin Ding, Auteur . - 2008 . - p. 7264–7273.
Chemical engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N°19 (Octobre 2008) . - p. 7264–7273
Mots-clés : Partial differential equations Neural-network architecture Closed-loop control system Note de contenu :
In this paper the distributed parameter systems comprise first-order partial differential equations coupled with ordinary differential equations. Through time and space discretization the explicit formulation of finite-difference model is constructed. Under effects of unknown disturbances and parameter uncertainties, an online learning algorithm, by virtue of the minimal output error between the system and neuro model, is developed. If only a few output measurements are available, the spatial feedforward neural-network architecture is integrated into the nondistributed predictive control framework. The stability analysis of the closed-loop control system is addressed through the discrete-time Lyapunov function approach. Two examples including a bioreactor system governed by the population balance equation and the nonisothermal tubular reactor system are used to verify the effectiveness of the proposed method.En ligne : http://pubs.acs.org/doi/abs/10.1021/ie800474m