Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dean Camper
Documents disponibles écrits par cet auteur
Affiner la rechercheRoom-temperature ionic liquid−amine solutions: tunable solvents for efficient and reversible capture of cO2 / Dean Camper in Industrial & engineering chemistry research, Vol. 47 n°21 (Novembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°21 (Novembre 2008) . - p. 8496–8498
Titre : Room-temperature ionic liquid−amine solutions: tunable solvents for efficient and reversible capture of cO2 Type de document : texte imprimé Auteurs : Dean Camper, Auteur ; Jason E. Bara, Auteur ; Douglas L. Gin, Auteur Année de publication : 2008 Article en page(s) : p. 8496–8498 Langues : Anglais (eng) Résumé : Solutions of room-temperature ionic liquids (RTILs) and commercially available amines were found to be effective for the capture of CO2 as carbamate salts. RTIL solutions containing 50 mol % (16% v/v) monoethanolamine (MEA) are capable of rapid and reversible capture of 1 mol of CO2 per 2 moles MEA to give an insoluble MEA−carbamate precipitate that helps to drive the capture reaction (as opposed to aqueous amine systems). Diethanolamine (DEA) can also be used in the same manner for CO2 capture in RTILs containing a pendant hydroxyl group. The captured CO2 in the resulting RTIL−carbamate salt mixtures can be readily released by either heating and/or subjecting them to reduced pressure. Using this unprecedented and industrially attractive mixing approach, the desirable properties of RTILs (i.e., nonvolatility, enhanced CO2 solubility, lower heat capacities) can be combined with the performance of amines for CO2 capture without the use of specially designed, functionalized “task-specific” ionic liquids. By mixing RTILs with commercial amines, reactive solvents with a wide range of amine loading levels can be tailored to capture CO2 in a variety of conditions and processes. These RTIL−amine solutions behave similarly to their water-based counterparts but may offer many advantages, including increased energy efficiency, compared to current aqueous amine technologies. [article] Room-temperature ionic liquid−amine solutions: tunable solvents for efficient and reversible capture of cO2 [texte imprimé] / Dean Camper, Auteur ; Jason E. Bara, Auteur ; Douglas L. Gin, Auteur . - 2008 . - p. 8496–8498.
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°21 (Novembre 2008) . - p. 8496–8498
Résumé : Solutions of room-temperature ionic liquids (RTILs) and commercially available amines were found to be effective for the capture of CO2 as carbamate salts. RTIL solutions containing 50 mol % (16% v/v) monoethanolamine (MEA) are capable of rapid and reversible capture of 1 mol of CO2 per 2 moles MEA to give an insoluble MEA−carbamate precipitate that helps to drive the capture reaction (as opposed to aqueous amine systems). Diethanolamine (DEA) can also be used in the same manner for CO2 capture in RTILs containing a pendant hydroxyl group. The captured CO2 in the resulting RTIL−carbamate salt mixtures can be readily released by either heating and/or subjecting them to reduced pressure. Using this unprecedented and industrially attractive mixing approach, the desirable properties of RTILs (i.e., nonvolatility, enhanced CO2 solubility, lower heat capacities) can be combined with the performance of amines for CO2 capture without the use of specially designed, functionalized “task-specific” ionic liquids. By mixing RTILs with commercial amines, reactive solvents with a wide range of amine loading levels can be tailored to capture CO2 in a variety of conditions and processes. These RTIL−amine solutions behave similarly to their water-based counterparts but may offer many advantages, including increased energy efficiency, compared to current aqueous amine technologies. Room-temperature ionic liquids / Alexia Finotello in Industrial & engineering chemistry research, Vol. 47 N°10 (Mai 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N°10 (Mai 2008) . - p. 3453–3459
Titre : Room-temperature ionic liquids : temperature dependence of gas solubility selectivity Type de document : texte imprimé Auteurs : Alexia Finotello, Auteur ; Jason E. Bara, Auteur ; Dean Camper, Auteur ; Richard D. Noble, Auteur Année de publication : 2008 Article en page(s) : p. 3453–3459 Note générale : Bibliogr. p. 3459 Langues : Anglais (eng) Mots-clés : CO2; CH4; H2; N2; Bulk fluid solubility Résumé : This study focuses on bulk fluid solubility of carbon dioxide (CO2), methane (CH4), hydrogen (H2), and nitrogen (N2) gases in the imidazolium-based RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]), 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]), and 1,3-dimethylimidazolium methyl sulfate ([mmim][MeSO4]) as a function of temperature (25, 40, 55, and 70 °C) at near-atmospheric pressures. The experimental behaviors are explained in terms of thermodynamic relationships that account for the negligible vapor pressure of the RTIL as well as the low solubilities of the gases. Results show that, as temperature increases, the solubility of CO2 decreases in all RTILs, the solubility of CH4 remains constant in [emim][Tf2N] and [hmim][Tf2N] but increases in [mmim][MeSO4] and [emim][BF4], and the solubility of N2 and H2 increases. Also, the ideal solubility selectivity (ratio of pure-component solubilities) increases as temperature decreases for CO2/N2, CO2/CH4, and CO2/H2 systems. Experimental values for the enthalpy and entropy of solvation are reported. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie0704142 [article] Room-temperature ionic liquids : temperature dependence of gas solubility selectivity [texte imprimé] / Alexia Finotello, Auteur ; Jason E. Bara, Auteur ; Dean Camper, Auteur ; Richard D. Noble, Auteur . - 2008 . - p. 3453–3459.
Bibliogr. p. 3459
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N°10 (Mai 2008) . - p. 3453–3459
Mots-clés : CO2; CH4; H2; N2; Bulk fluid solubility Résumé : This study focuses on bulk fluid solubility of carbon dioxide (CO2), methane (CH4), hydrogen (H2), and nitrogen (N2) gases in the imidazolium-based RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]), 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]), and 1,3-dimethylimidazolium methyl sulfate ([mmim][MeSO4]) as a function of temperature (25, 40, 55, and 70 °C) at near-atmospheric pressures. The experimental behaviors are explained in terms of thermodynamic relationships that account for the negligible vapor pressure of the RTIL as well as the low solubilities of the gases. Results show that, as temperature increases, the solubility of CO2 decreases in all RTILs, the solubility of CH4 remains constant in [emim][Tf2N] and [hmim][Tf2N] but increases in [mmim][MeSO4] and [emim][BF4], and the solubility of N2 and H2 increases. Also, the ideal solubility selectivity (ratio of pure-component solubilities) increases as temperature decreases for CO2/N2, CO2/CH4, and CO2/H2 systems. Experimental values for the enthalpy and entropy of solvation are reported. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie0704142