Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Marek Maly
Documents disponibles écrits par cet auteur
Affiner la rechercheSelf-assembly of nanoparticle mixtures in diblock copolymers / Marek Maly in Industrial & engineering chemistry research, Vol. 47 n°15 (Août 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 n°15 (Août 2008) . - p. 5023–5038
Titre : Self-assembly of nanoparticle mixtures in diblock copolymers : multiscale molecular modeling Type de document : texte imprimé Auteurs : Marek Maly, Auteur ; Paola Posocco, Auteur ; Sabrina Pricl, Auteur ; Fermeglia, Maurizio, Auteur Année de publication : 2008 Article en page(s) : p. 5023–5038 Note générale : Bibliogr. p. 5038 Langues : Anglais (eng) Mots-clés : Copolymers Nanoparticles Hybrid materialsDissipative particle dynamics Résumé : Mixing microphase-separating diblock copolymers and nanoparticles can lead to the self-assembly of organic/inorganic hybrid materials that are spatially organized on the nanometer scale. Controlling particle location and patterns within the polymeric matrix domains remains, however, an unmet need. Computer simulation of such systems constitutes an interesting challenge since an appropriate technique would require the capturing of both the formation of the diblock mesophases and the copolymer−particle and particle−particle interactions, which can affect the ultimate structure of the material. In this paper we discuss the application of dissipative particle dynamics (DPD) to the study of the distribution of nanoparticles in lamellar and hexagonal diblock copolymer matrices. The DPD parameters of the systems were calculated according to a multiscale modeling approach, i.e., from lower scale (atomistic) simulations. The results show that the positioning and ordering of the nanoparticles depend on several different factors, including their covering type and volume fraction. Also, the geometric features of the matrix are found to exert an influence on the particle location and pattern. The overall results provide molecular-level information for the rational, a priori design of new polymer−particle nanocomposites with ad hoc, tailored properties. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071311m [article] Self-assembly of nanoparticle mixtures in diblock copolymers : multiscale molecular modeling [texte imprimé] / Marek Maly, Auteur ; Paola Posocco, Auteur ; Sabrina Pricl, Auteur ; Fermeglia, Maurizio, Auteur . - 2008 . - p. 5023–5038.
Bibliogr. p. 5038
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 n°15 (Août 2008) . - p. 5023–5038
Mots-clés : Copolymers Nanoparticles Hybrid materialsDissipative particle dynamics Résumé : Mixing microphase-separating diblock copolymers and nanoparticles can lead to the self-assembly of organic/inorganic hybrid materials that are spatially organized on the nanometer scale. Controlling particle location and patterns within the polymeric matrix domains remains, however, an unmet need. Computer simulation of such systems constitutes an interesting challenge since an appropriate technique would require the capturing of both the formation of the diblock mesophases and the copolymer−particle and particle−particle interactions, which can affect the ultimate structure of the material. In this paper we discuss the application of dissipative particle dynamics (DPD) to the study of the distribution of nanoparticles in lamellar and hexagonal diblock copolymer matrices. The DPD parameters of the systems were calculated according to a multiscale modeling approach, i.e., from lower scale (atomistic) simulations. The results show that the positioning and ordering of the nanoparticles depend on several different factors, including their covering type and volume fraction. Also, the geometric features of the matrix are found to exert an influence on the particle location and pattern. The overall results provide molecular-level information for the rational, a priori design of new polymer−particle nanocomposites with ad hoc, tailored properties. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071311m